MET3502 Synoptic Meteorology

Lecture 10: Vectors and Del Operator (Martin's book chapter 1.2.1)

1. Definition:

A vector has both magnitude & direction
 It has components along particular directions.

Here
$$\overline{A} = A_x \overline{i} + A_y \overline{j}$$

 $A_y = |A| \cos \theta$ $A_x = |A| \sin \theta$
3) Vectors are different from scalars, which
have only magnitude.

2. Meteorological and Vector Winds:

1) Meteorological (MET) winds are reckoned as the direction **FROM** which the wind is blowing. North-North-West (NNW) for the figure on the left.

2) However, vector winds are reckoned as the director **TOWARD** which the wind is blowing. South-South-East (SSE) for the figure on the left.

3) When using degrees to describe wind directions for either MET winds or vector winds, please use the

compass coordinates (Lec. 3 slide#14), i.e.: 0°=N, 45°=NE, 90°=E, 180°=S, 270°=W, 315°=NW.

4) Vector wind direction=MET wind direction+180°
 Subtract 360° if the answer is greater than 360°

3. Vector Components:

- 1) Two dimensional: X, Y components. X points East and Y points North (in meteorology). $\vec{A} = A_x \vec{\iota} + A_y \vec{j}$ or (A_x, A_y)
- 2) Three-dimensional vector: x points East, y North, z up. $\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$ or (A_x, A_y, A_z)

3) Wind vector:

2D: $\vec{V} = u\vec{i} + v\vec{j}$ or (u, v)3D: $\vec{V} = u\vec{i} + v\vec{j} + w\vec{k}$ or (u, v, w)Generally, $w \ll u, v$

4. Magnitude & Direction:

1) 2D: direction angle θ $\tan \theta = \frac{A_x}{A_y}$ 2) Magnitude: $3D: |\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2};$ $2D: |\vec{A}| = \sqrt{A_x^2 + A_y^2}$

5. Adding and Subtracting Vectors:

1) Negative of a vector: is the negative of its components.

2) Sum of two vectors: add corresponding components.

If
$$\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$$
; $\vec{B} = B_x \vec{i} + B_y \vec{j} + B_z \vec{k}$
Then $\vec{A} + \vec{B} = (A_x + B_x)\vec{i} + (A_y + B_y)\vec{j} + (A_z + B_z)\vec{k}$
Sum of two vectors is the sum of their components.
Graphical sum of two vectors is the diagnose vector of the
parallelogram formed by vectors \vec{A} and \vec{B} as shown on the left.

3) Subtracting: difference of two vectors is the difference of their corresponding components.

$$\vec{A} - \vec{B} = (A_x - B_x)\vec{\iota} + (A_y - B_y)\vec{\jmath} + (A_z - B_z)\vec{k}$$

Graphical subtraction: results a vector from the head of \vec{B} to the head of \vec{A} , as shown on the left

- 6. Vector Products:
 - 1) Dot Product:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

- Multiply corresponding components
- Dot product of two vectors is a scalar.

2) Cross Product \rightarrow results in a vector!

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} \vec{i} - \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} \vec{j} + \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix} \vec{k}$$
$$= (A_y B_z - A_z B_y)\vec{i} - (A_x B_z - A_z B_x)\vec{j} + (A_x B_y - A_y B_x)\vec{k}$$
Magnitude of $\vec{A} \times \vec{B} : |\vec{A} \times \vec{B}| = |\vec{A}| \cdot |\vec{B}| \sin \alpha$

Direction of $\vec{A} \times \vec{B}$: the resultant vector is in a plane that is perpendicular to the plane that contains \vec{A} and \vec{B} . The direction of $\vec{A} \times \vec{B}$ in that plane is determined by Right Hand Rule: curl your 4 fingers of your right hand from \vec{A} to \vec{B} , your thumb points to the direction of $\vec{A} \times \vec{B}$.

7. Gradient (Del) Operator:

⊽т

- Describes both the magnitude and direction of the derivative of a scalar field.

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

- After applying this partial differential Del operator to a scalar function or field, the result is a vector that is known as the <u>Gradient of that scalar</u>.
- For example: the gradient of temperature: the gradient of temperature:

$$\nabla \mathbf{T} = \frac{\partial T}{\partial x}\vec{\imath} + \frac{\partial T}{\partial y}\vec{\jmath} + \frac{\partial T}{\partial z}\vec{k}$$

Note: 1) the ∇T vector always points toward high temperature values.

2) Because vertical temperature change is very big and points downwards, meteorologists usually only consider the horizontal temperature gradient: $\nabla_P T = \frac{\partial T}{\partial x} \vec{\iota} + \frac{\partial T}{\partial y} \vec{j}$

∇T

10°C ↓ ⊽T

warm

– Another example: Pressure gradient ∇P is in the opposite ^{are} direction of pressure gradient force (PGF).

Note: Keep in mind, gradient also refers to "rate of change" with distance.

8. Divergence:

The Del operation (∇) may be applied to vectors. The dot product of Del operator and \vec{A} :

$$\nabla \cdot \vec{A} = \left(\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}\right) \cdot \left(A_x\vec{i} + A_y\vec{j} + A_z\vec{k}\right)$$
$$= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

- Which is a scalar quantity known as the divergence of \overline{A} .

Example: Divergence of wind: $\nabla \cdot \vec{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$

- Represents expansion of an element of air when the wind increases downstream.
- Can be negative convergence (contraction)
- Horizontal divergence (convergence) at surface causes sinking (rising) motion. $\nabla \cdot \vec{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$
- A flow with zero divergence is said to be non-divergent.

Below are a few common flow patterns in meterology:

