MET3502 Synoptic Meteorology

Lecture 10: Vectors and Del Operator (Martin's book chapter 1.2.1)

1. Definition:

1) A vector has both magnitude \& direction
2) It has components along particular directions.

Here $\vec{A}=A_{x} \vec{\imath}+A_{y} \vec{\jmath}$
$A_{y}=|A| \cos \theta \quad A_{x}=|A| \sin \theta$
3) Vectors are different from scalars, which have only magnitude.

2. Meteorological and Vector Winds:

1) Meteorological (MET) winds are reckoned as the direction FROM which the wind is blowing. North-North-West (NNW) for the figure on the left.
2) However, vector winds are reckoned as the director TOWARD which the wind is blowing. South-South-East (SSE) for the figure on the left.
3) When using degrees to describe wind directions for either MET winds or vector winds, please use the compass coordinates (Lec. 3 slide\#14), i.e.: $0^{\circ}=\mathrm{N}, 45^{\circ}=\mathrm{NE}, 90^{\circ}=\mathrm{E}, 180^{\circ}=\mathrm{S}, 270^{\circ}=\mathrm{W}$, $315^{\circ}=\mathrm{NW}$.
4) Vector wind direction=MET wind direction $+180^{\circ}$

Subtract 360° if the answer is greater than 360°

3. Vector Components:

1) Two dimensional: X, Y components. X points East and Y points North (in meteorology).

$$
\vec{A}=A_{x} \vec{\imath}+A_{y} \vec{\jmath} \text { or }\left(A_{x}, A_{y}\right)
$$

2) Three-dimensional vector:

x points East, y North, z up.
$\vec{A}=A_{x} \vec{\imath}+A_{y} \vec{\jmath}+A_{z} \vec{k}$ or $\left(A_{x}, A_{y}, A_{z}\right)$

3) Wind vector:

2D: $\vec{V}=u \vec{\imath}+v \vec{\jmath}$ or (u, v)
3D: $\vec{V}=u \vec{\imath}+v \vec{\jmath}+w \vec{k}$ or (u, v, w)
Generally, $w \ll u, v$

4. Magnitude \& Direction:

1) 2 D : direction angle θ

$$
\tan \theta=\frac{A_{x}}{A_{y}}
$$

2) Magnitude:

3D: $|\vec{A}|=\sqrt{{A_{x}}^{2}+{A_{y}}^{2}+{A_{z}}^{2}} ;$

$2 \mathrm{D}:|\vec{A}|=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}}$

5. Adding and Subtracting Vectors:

1) Negative of a vector: is the negative of its components.

$\vec{A}=A_{x} \vec{\imath}+A_{y} \vec{\jmath}+A_{z} \vec{k}$
then, $-\vec{A}=-A_{x} \vec{\imath}-A_{y} \vec{\jmath}-A_{z} \vec{k}$
2) Sum of two vectors: add corresponding components.

If $\vec{A}=A_{x} \vec{\imath}+A_{y} \vec{\jmath}+A_{z} \vec{k} ; \vec{B}=B_{x} \vec{\imath}+B_{y} \vec{\jmath}+B_{z} \vec{k}$
Then $\vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \vec{\imath}+\left(A_{y}+B_{y}\right) \vec{\jmath}+\left(A_{z}+B_{z}\right) \vec{k}$
Sum of two vectors is the sum of their components.
Graphical sum of two vectors is the diagnose vector of the parallelogram formed by vectors \vec{A} and \vec{B} as shown on the left.
3) Subtracting: difference of two vectors is the difference of their corresponding components.

$\vec{A}-\vec{B}=\left(A_{x}-B_{x}\right) \vec{\imath}+\left(A_{y}-B_{y}\right) \vec{\jmath}+\left(A_{z}-B_{z}\right) \vec{k}$
Graphical subtraction: results a vector from the head of \vec{B} to the head of \vec{A}, as shown on the left

6. Vector Products:

1) Dot Product:

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

- Multiply corresponding components
- Dot product of two vectors is a scalar.

2) Cross Product \longrightarrow results in a vector!

$$
\begin{gathered}
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left|\begin{array}{cc}
A_{y} & A_{z} \\
B_{y} & B_{z}
\end{array}\right| \vec{\imath}-\left|\begin{array}{cc}
A_{x} & A_{z} \\
B_{x} & B_{z}
\end{array}\right| \vec{\jmath}+\left|\begin{array}{cc}
A_{x} & A_{y} \\
B_{x} & B_{y}
\end{array}\right| \vec{k} \\
=\left(A_{y} B_{z}-A_{z} B_{y}\right) \vec{\imath}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \vec{\jmath}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \vec{k}
\end{gathered}
$$

Magnitude of $\vec{A} \times \vec{B}:|\vec{A} \times \vec{B}|=|\vec{A}| \cdot|\vec{B}| \sin \alpha$

Direction of $\vec{A} \times \vec{B}$: the resultant vector is in a plane that is perpendicular to the plane that contains \vec{A} and \vec{B}. The direction of $\vec{A} \times \vec{B}$ in that plane is determined by Right Hand Rule: curl your 4 fingers of your right hand from \vec{A} to \vec{B}, your thumb points to the direction of $\vec{A} \times \vec{B}$.

7. Gradient (Del) Operator:

- Describes both the magnitude and direction of the derivative of a scalar field.

$$
\nabla=\frac{\partial}{\partial x} \vec{\imath}+\frac{\partial}{\partial y} \vec{\jmath}+\frac{\partial}{\partial z} \vec{k}
$$

- After applying this partial differential Del operator to a scalar function or field, the result is a vector that is known as the Gradient of that scalar.
- For example: the gradient of temperature: the gradient of temperature:

8. Divergence:

The Del operation (∇) may be applied to vectors. The dot product of Del operator and \vec{A} :

$$
\begin{aligned}
\nabla \cdot \vec{A}=\left(\frac{\partial}{\partial x} \vec{\imath}\right. & \left.+\frac{\partial}{\partial y} \vec{\jmath}+\frac{\partial}{\partial z} \vec{k}\right) \cdot\left(A_{x} \vec{\imath}+A_{y} \vec{\jmath}+A_{z} \vec{k}\right) \\
& =\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
\end{aligned}
$$

- Which is a scalar quantity known as the divergence of $\overrightarrow{\boldsymbol{A}}$.

Example: Divergence of wind: $\nabla \cdot \vec{V}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}$

- Represents expansion of an element of air when the wind increases downstream.
- Can be negative - convergence (contraction)
- Horizontal divergence (convergence) at surface causes sinking (rising) motion. $\nabla \cdot \vec{V}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}$
- A flow with zero divergence is said to be non-divergent.

Below are a few common flow patterns in meterology:

Purely divergent

diffluence

Purely convergent

divergent straight flow convergent straight flow

