MET 3502/5561 Synoptic Meteorology

Lecture 11: Curl, LaPlacian, Total Derivative, and Coordinate Systems

1. Vorticity/curl:

The cross product of ∇ with vector \vec{A} is called the curl of \vec{A} :

$$
\begin{aligned}
\nabla \times \vec{A}=\left(\frac{\partial}{\partial x} \vec{\imath}\right. & \left.+\frac{\partial}{\partial y} \vec{\jmath}+\frac{\partial}{\partial z} \vec{k}\right) \times\left(A_{x} \vec{\imath}+A_{y} \vec{\jmath}+A_{z} \vec{k}\right) \\
& =\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|
\end{aligned}
$$

3×3 determinant

The curl of wind vector \vec{v} is called vorticity, which is a measure of the rotation of a fluid.

1) Vorticity represents rotation \& distortion of an element of air when the wind increases cross stream.
2) A flow with zero curl is said to be irrotational. Positive vorticity is cyclonic (anticlockwise in Northern Hemisphere), negative vorticity is anticyclonic.

Convergent \& Cyclonic
3) Convergence (divergence) tends to increase (decrease) the curl (vorticity).

2. Laplacian Operator:

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

Which is the gradient of gradient, or the rate change
of gradient (second derivative)
Example: $\nabla^{2} T=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}$
Physical Interpretation:
When there is A minimum in $T \Rightarrow \nabla^{2} T>0$
When there is A maximum in $T \Rightarrow \nabla^{2} T<0$
Maximum in T means there is minimum in $\nabla^{2} T$

3. Expansion of a total derivative (Martin's book, chapter 1.2.4):

$$
\frac{D}{D t}
$$

Total Derivative
Lagrangian rate of change
Derivative following a parcel (Rate of change following the flow)

$$
=\frac{\partial}{\partial t}
$$

$$
+\vec{v} \cdot \nabla
$$

Partial derivative

Euler rate of change Local rate of change Derivative at a point If steady state, then

$$
\frac{\partial}{\partial t}=0
$$

$$
\frac{\partial T}{\partial t}=\frac{T_{2}-T_{1}}{\Delta t}
$$

at time 1

$$
\begin{aligned}
& \text { at time } 2 \\
& \text { at Miami }
\end{aligned}
$$

Negative Advection (remember advection is $-\vec{v} \cdot \nabla)$

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}
$$

For example: $\frac{D T}{D t}=\frac{\partial T}{\partial t}+\vec{v} \cdot \nabla T=\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}$
is frequently expressed in pressure coordinates:

$$
\frac{D T}{D t}=\frac{\partial T}{\partial t}+\vec{v} \cdot \nabla T=\frac{\partial T}{\partial t}+\underset{\substack{\text { Take along } \\ \text { pressure surfaces }}}{u \frac{\partial T}{\partial x_{p}}+v \frac{\partial T}{\partial y_{p}}+\omega \frac{\partial T}{\partial P}} \longrightarrow_{\uparrow}^{\longrightarrow}=\frac{D P}{D t}
$$

If steady state at Miami, then $\frac{\partial T}{\partial t}=0$ (No local change, but we do have cold advection $(\vec{v} \cdot \nabla T>0)$ \& surface heating $\left(\frac{D T}{D t}>0\right)$ balance each other.)

$$
\frac{D T}{D t}=\frac{\partial T}{\partial t}+\vec{v} \cdot \nabla T
$$

Advection: $-\vec{v} \cdot \nabla$, is based on the gradient of anything and wind direction.
Advection means how much the wind intersects the contour of any parameter; how much the wind wants to transfer.
$\left\{\begin{array}{c}\text { larger wind } \rightarrow \text { larger advection } \\ \text { larger gradient of parameter } \rightarrow \text { larger advection }\end{array}\right.$

If $\nabla T \& \vec{v}$ are parallel, the advection is maximum
If $\nabla T \& \vec{v}$ are perpendicular, the advection is 0 .

4. Coordinate Systems:

1) Cartesian Coordinates: x, y, z (z along constant height surface, x to the east, y to the north)
2) Pressure Coordinates: x, y, P (P along constant pressure surface)
$\frac{\partial}{\partial x_{p}}, \frac{\partial}{\partial y_{p}}$ — derivatives are taken along pressure surface, they are almost same as $\frac{\partial}{\partial x^{\prime}}, \frac{\partial}{\partial y^{\prime}}$, but for math convenience.
3) Isentropic Coordinates: x, y, θ (θ along potential temperature surface). Since θ surfaces are of constant entropy, so (x, y, θ) are referred to as isentropic coordinates. This coordinate is usually for physical interpretation convenience.
4) Natural Coordinates (Martin's book, chapter 4.4) (Wallace \& Hobbs's book, chapter 8.1.3): — defined following the flow/ fluid motion (streamlines) Advantage: can be useful for diagnosing force balance and the dynamics controlling parcel movement.

At any point on any horizontal surface, we can define natural coordinates along streamlines:

* Unit vectors vary spatially (direction is changing).

So at any point in the flow, $v \equiv|\vec{v}|=\frac{d s}{d t^{\prime}} \& \frac{d n}{d t}=0$.
Momentum Equation: $(\vec{v}=v \vec{s})$

