MET 3502/5561 Synoptic Meteorology
Lecture 14: Divergence and Vertical Motion
Part 1: Divergence
1. Definition: Divergence is defined mathematically as the DOT product of the velocity

vector with the Del Operation:
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In many synoptic situations, we consider only the horizontal divergence:
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2. Examples:
1) Pure Divergence 2) Pure Convergence
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(Associate Down Burst)

3) Divergent Straight Flow 4) Convergent Straight Flow
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weak flow  strong flow (accelerate) fast weak (decelerate)
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Parcels are divergent Parcels are convergent

3. Divergence in natural coordinate:

1) Vp- V= g—z + v% (stretching term + diffluence term)
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diffluence term: o

Divergence or convergence of the streamlines normal to the flow

Examples:
Case 1: Convergent Straight Flow:
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Case 2: Divergent Straight Flow:
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Case 3: No along flow divergence, but divergence in direction normal to flow.
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Case 4: No along flow divergence, but convergence in direction normal to flow.
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It is possible to have non-divergent flow even when it looks divergent or convergent
if:
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e This means that the along-flow divergence is balanced by convergence normal to
the flow (or vice versa).



The total divergence is typically a small difference between two terms of nearly
equal magnitude but opposite sign.

= we refer to flow patterns as Diffluent or Confluent since one can’t assess
divergence by eye.
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Confluence & Diffluence provide deformation, which causes changes in the shape
of fluid bodies:
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Wind patterns that change the shape of fluid content are of the referred to as

Deformation Zones

Sheared flow can also produce deformation, as well as pure stretching
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—> — > or pure contraction—> —>, but typically are confluence
or diffluence rather than pure contraction or stretching.
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Pure deformation:

Y (axis of contraction)
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Frontogenesis related to deformation:
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Deformation is bringing these isothermals together, therefore front will
generate.



Part2: Vertical Motion
Supplemental Reading: (Holton’s book, Section 3.5)
Motivation: Since synoptic scale vertical motions are small and difficult to observe, a
conceptual model of vertical motions & circulations is needed to diagnose synoptic-scale
vertical motion.
e Begin with the continuity equation in pressure coordinates:

w is vertical velocity in pressure
du Jdv Jdw . . .
x + E + Fri 0 coordinates: in unit of Pa/s
x y p upward motion: w < 0; w = —pgw
e Integrating downward from the top of the atmosphere (P,) to some pressure level P.
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e Conclusion: the vertical motion at a given pressure level directly related to the integrated
divergence above that level.
e Assuming a mean divergence from level P to P, (top of atmosphere)
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e Possibilities:

6_u+6_v) > 0,sinceP >0,
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1) Mean Divergence aloft: (6x
= w(P) < 0 = rising motion
2) Mean Convergence aloft: (Z—Z =+ Z—;) < 0,sinceP >0,

= w(P) > 0 = Subsidence
e What is going in the whole column of the atmosphere?
e Let’s do asimple Scale analysis:
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Typically P & % area of nearly equal magnitude but opposite signs, so that £+
g—; ~107° to 10~°s~1. Therefore, the peak value of divergence in whole atmospheric

column is between 1075 to 10 ¢s™1.
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e Whatis ﬁ + £| —magnitude of the mean divergence in whole atmospheric column?



Recall: w(P) = — (a_u+ a”) P
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Consider at surface with pressure P = 1000 mb, then w(P) = 3.6 mb/h = 1100073(?5 is a

very big number for vertical motion at surface.
Assuming this case will be give us the maximum the mean divergence in whole
atmospheric column:
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Therefore, in most cases, the column mean divergence is smaller than the peak
divergence in that column. Exceptions are over sloping surfaces where w at the surface
may be large.

Conclusion:

The sign of the divergence must change signs at least once in a column. This level
. . a d
is known as the Level of Non-Divergence, where i + % = 0.

At this Level of Non-Divergence (LND), a local maximum or minimum in w must
ou  Jv  Jdw
be present: P + % + 5 = 0.
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Ifﬁ + é =0= a—;) = 0 = there is a maximum or minimum in w.

Dines Compensation:

1. Except over sloping terrain, the divergence must change signs at least once in a column.
2. The location of which the divergence change signs is known as the level of Non-
Divergence (LND).
3. A max. or min. of w is found at LND.
4. Rising motion is usually generally most of the time accompanied by divergence aloft &
convergence below.
5. Subsidence is accompanied by upper-level convergence & low-level divergence.
Bow String conceptual model:
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Synoptic experience:
1. Upper-level convergence is associated with low-level divergence & subsidence that is
strongest at the LND
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2. Upper-level divergence is associated with low-level convergence & ascent that is
strongest at the LND



