MET 3502/5561 Synoptic Meteorology

Lecture 15: Circulation \& Vorticity

Supplementary reading: Holton's textbook, Chapter 4.

Circulation:

Mathematical Definition: The linear integral about a contour of the component of the velocity vector that is locally tangent to the contour.

Physical Interpretation: Circulation is a measure of the extent to which a fluid exhibits rotary motion. By convention, it is taken to be positive for counterclockwise integration around the contour.

Component Form Examples: for the circulation of the rectangular fluid contour below:

$$
\begin{aligned}
C & =\oint \vec{V} \cdot d l=u \cdot \Delta x+\left(v+\frac{\partial v}{\partial x} \cdot \Delta x\right) \cdot \Delta y-\left(u+\frac{\partial u}{\partial y} \cdot \Delta y\right) \cdot \Delta x-v \cdot \Delta y \\
& =\left[u-u-\frac{\partial u}{\partial y} \cdot \Delta y\right] \cdot \Delta x+\left[v+\frac{\partial v}{\partial x} \cdot \Delta x-v\right] \cdot \Delta y \\
& =\left[\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right] \cdot \Delta x \cdot \Delta y
\end{aligned}
$$

Vorticity:

- Defined mathematically as the curl of the velocity vector:

$$
\zeta=\nabla \times \vec{V}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
u & v & w
\end{array}\right|=\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \vec{\imath}-\left(\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z}\right) \vec{\jmath}+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \vec{k}
$$

- In synoptic meteorology, we typically consider only the vertical component of the vorticity, so that:

$$
\zeta=\vec{k} \cdot \nabla \times \vec{V}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}
$$

- This is what synopticians typically refer to as the relative vorticity (add f, then you have absolute vorticity, which is what is typically plotted on synoptic charts).
- What is vorticity?
- Vorticity is a $\$ 0.02$ word for spin.
- Recall $C=\oint \vec{V} \cdot d l=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \cdot \Delta x \cdot \Delta y \Longrightarrow$ $C=\zeta \cdot A$ or $\zeta=C / A$
- Vorticity is just a measure of the circulation per unit area.
- Circulation is a macroscopic measure of rotation, whereas vorticity is a microscopic measure.
- Physical Interpretation:
- Vorticity is just a measure of spin, so imagine putting a pinwheel in the flow \& seeing what direction it spins in \& how fast it spins.

- The faster the spin, the greater the magnitude of the vorticity. These are "shear vorticity" (see below).
- Vorticity Components:
- Another way to think about vorticity is using natural coordinates. In the natural coordinate system, vorticity is given by: $\zeta=\frac{V}{R_{S}}-\frac{\partial V}{\partial n}, R_{S}$ is the radius of the streamline
$\circ \quad \Rightarrow$ Two components:
- 1. $\frac{V}{R_{S}} \rightarrow$ turning (or curvature) in the wind along a streamline.

- 2. $-\frac{\partial V}{\partial n} \longrightarrow$ rate of change of wind speed across a streamline.

- Relative vs. Absolute Vorticity:
- So far, we were discussed relative vorticity, which is based on the wind speed relative to a fixed point on earth.
- Absolute Vorticity also considers the effects of the Earth rotation, which is also called the planetary vorticity.
$\eta=$ Absolute Vorticity $=\vec{k} \cdot \nabla \times \overrightarrow{V_{a}}=\vec{k} \cdot \nabla \times \overrightarrow{V_{r}}+\vec{k} \cdot \nabla \times \overrightarrow{V_{e}}, \quad \overrightarrow{V_{r}} \quad$ is wind relative to Earth, $\overrightarrow{V_{e}}$ is the Earth's velocity, $\vec{k} \cdot \nabla \times \vec{V}_{e}$ is the vorticity of the earth.
- What is $\nabla \times \vec{V}_{e}$ _ the vorticity of the earth?

$$
\begin{aligned}
& \Rightarrow C=\oint \Omega r d l=\Omega r \oint d l \text { since } \Omega \& r \text { are constant around line. } \\
& \oint d l=\text { circumference }=2 \pi r \\
& \Rightarrow C=\Omega r \cdot 2 \pi r=2 \pi r^{2} \Omega
\end{aligned}
$$

- Recall that vorticity $=C / A \Rightarrow$

$$
\nabla \times \overrightarrow{V_{e}}=\frac{C}{A}=\frac{2 \pi r^{2} \Omega}{\pi r^{2}}=2 \Omega \rightarrow \text { Vorticity of solid body rotation \& rotating earth }
$$

- But we are interested in the vertical component (i.e. $\vec{k} \cdot \nabla \times \overrightarrow{V_{e}}$), the component along \vec{k}
$\Rightarrow \vec{k} \cdot \nabla \times \overrightarrow{V_{e}}=2 \Omega \sin \phi \quad$ (By geometry! ϕ is the latitude) $=f \rightarrow$ Coriolis Parameter !
$\Rightarrow \eta=\zeta+f=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}+f \quad \rightarrow$ absolute vorticity
- Absolute vorticity is commonly displayed on synoptic charts.
- Typically expressed in units of $10^{-5} s^{-1}$
- Rare to see negative absolute vorticity on the synoptic scale

