MET3502/5561 Lecture 18: Potential Vorticity

Supplemental Reading: Holton's book, Section 4.3

<u>Motivation</u>: Need a simple equation to diagnose synoptic-dynamics that is easier to interpret than the vorticity equation and more complete than the barotropic vorticity equation.

• As shown in Holton's books section 4.3, assuming adiabatic & frictionless conditions, the potential vorticity (*PV*) is conserved following fluid motion:

$$PV \equiv (\zeta_{\theta} + f) \left(-g \frac{\partial \theta}{\partial P} \right), \frac{DPV}{Dt} = 0 \text{ if adiabatic & frictionless}$$

- (potential temperature θ is conserved if adiabatic)
- Advantage: can be used for divergent (vertical motion w ≠ 0) & baroclinic (density ρ ≠ const) conditions, such as is found in the actual atmosphere.

Components of Potential Vorticity

- 1. ζ_{θ} = relative vorticity in isentropic coordinates:
 - Isentropic coordinates use potential temperature (θ) to define horizontal surfaces.

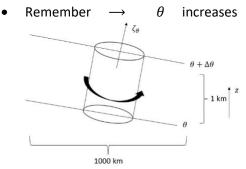
with

height

(unless

super

adiabatic)

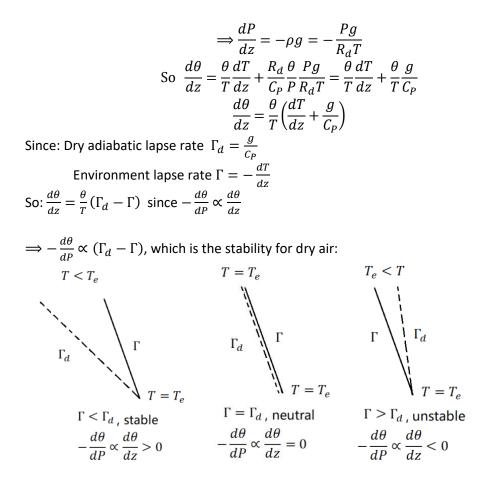


- ζ_{θ} is simply the component of vorticity normal to the potential temperature surfaces.
- Most of the time (But not always) $|\zeta_{\theta}| \simeq |\zeta_z|$
- 2. f =planetary vorticity
- 3. g = gravity [assume constant]
- 4. $-\frac{\partial \theta}{\partial P}$ = Static Stability

 θ is potential temperature: $\theta = T\left(\frac{1000 \ mb}{P}\right)^{R_d/C_P}$, where *P* is pressure, C_P is specific heat of dry air when pressure is constant, R_d is the individual gas constant for dry air.

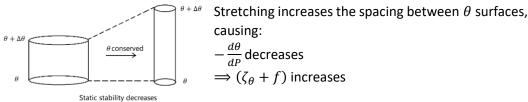
$$\Rightarrow \frac{d\theta}{dz} = \left(\frac{1000}{P}\right)^{R_d/C_P} \frac{dT}{dz} + T \cdot 1000^{R_d/C_P} \frac{dP^{\left(-\frac{R_d}{C_P}\right)}}{dz}$$

Since $\frac{\theta}{T} = \left(\frac{1000}{P}\right)^{R_d/C_P}$ So:
 $\frac{d\theta}{dz} = \frac{\theta}{T} \frac{dT}{dz} - \frac{R_d}{C_P} T \frac{1000^{R_d/C_P}}{P^{(R_d/C_P+1)}} \frac{dP}{dz}$
 $= \frac{\theta}{T} \frac{dT}{dz} - \frac{R_d}{C_P} \theta \cdot \frac{1}{P} \frac{dP}{dz}$
From Hydrostatic Equation: $dP = -\rho g dz$, $\rho = \frac{P}{R_d T}$

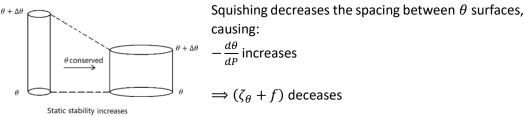


Physical Interpretation:

- *PV* is a function of:
 - 1) Absolute Vorticity $\zeta_{\theta} + f$
 - 2) Static Stability $\left(-\frac{d\theta}{dP}\right)$
- If *PV* is conserved, then an increase of either $(\zeta_{\theta} + f)$ or $-\frac{d\theta}{dP}$ must lead to a decrease of the other (or vice versa).
- If a fluid column is stretched, the absolute vorticity must increase because :

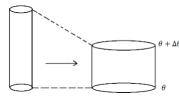


• If a fluid column is squished, the absolute vorticity must <u>decrease</u> because:

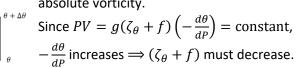


Applications of PV:

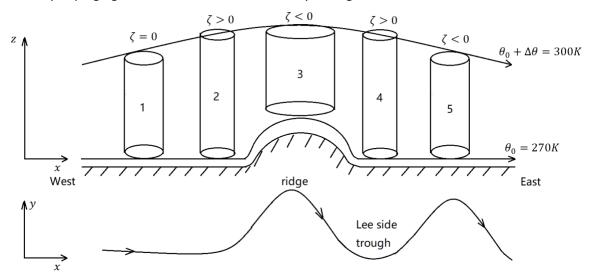
- Example 1: What happens when an air column moves from a region of low static stability to a region of high static stability?
 - If static stability is increasing, then $-\frac{d\theta}{dP}$ is increasing \Rightarrow the θ surface must be getting closer together:



Column is squished \rightarrow parcel must decrease the absolute vorticity.



• Example 2 (Holton's book, Page 100-102): Zonal westerly flow with no initial relative vorticity impinging on a mountain barrier — Lee cyclone genesis

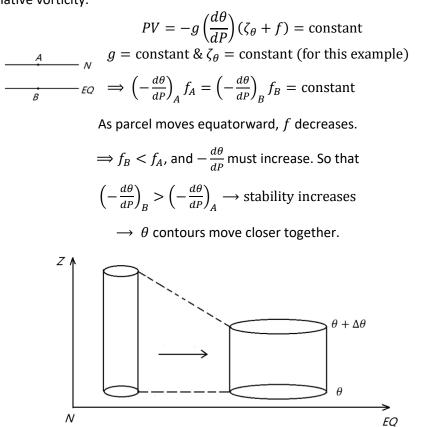


Position	$-\frac{d\theta}{dP}$	f	$\zeta_\theta(\backsim \zeta)$
1	> 0	f_0 (doesn't change much)	= 0
1-2	Decreasing (stretching)	f_0	must increase
2		f_0	$\zeta > 0$
2-3	Increasing (squishing)	f_0	must decrease
3		f_0	$\zeta < 0$
3-4	Decreasing (stretching)	f_0	must increase
4		f_0	$\zeta > 0$
4-5	Increasing (squishing)	f_0	must decrease
5		f_0	$\zeta < 0$

Result: Steady westerly flow over a large-scale mountain barrier will result in a cyclonic flow pattern immediately to the east of the barrier (the lee side through) followed by an alternating series of ridges & troughs.

Please read Holton's book, Page 99-102 for easterly flow example.

• Example 3: What is the impact of equator ward motion of an air column that has constant relative vorticity.



 \Rightarrow If no change in relative vorticity is allowed, cold air moving equatorward will sink & warm.

Synoptic Application: Air moving equatorward will sink & warm if no relative vorticity is generated, while air moving poleward will rise & cool.