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MET3502/5561 Lecture 18: Potential Vorticity 

Supplemental Reading: Holton’s book, Section 4.3 

Motivation: Need a simple equation to diagnose synoptic-dynamics that is easier to interpret than 

the vorticity equation and more complete than the barotropic vorticity equation. 

• As shown in Holton’s books section 4.3, assuming adiabatic & frictionless conditions, the 

potential vorticity (𝑃𝑉) is conserved following fluid motion: 

𝑃𝑉 ≡ (𝜁𝜃 + 𝑓) (−𝑔
𝜕𝜃

𝜕𝑃
) ,

𝐷𝑃𝑉

𝐷𝑡
= 0 if adiabatic & frictionless 

(potential temperature 𝜃 is conserved if adiabatic) 

• Advantage: can be used for divergent (vertical motion 𝑤 ≠ 0) & baroclinic (density 𝜌 ≠

const) conditions, such as is found in the actual atmosphere.  

Components of Potential Vorticity 

1. 𝜁𝜃 = relative vorticity in isentropic coordinates: 

• Isentropic coordinates use potential temperature (𝜃) to define horizontal surfaces. 

• Remember ⟶  𝜃  increases with height (unless super adiabatic)  

 
• 𝜁𝜃 is simply the component of vorticity normal to the potential temperature surfaces. 

• Most of the time (But not always) |𝜁𝜃| ≃ |𝜁𝑧| 

2. 𝑓 = planetary vorticity 

3. 𝑔 = gravity [assume constant] 

4. −
𝜕𝜃

𝜕𝑃
= Static Stability 

𝜃 is potential temperature: 𝜃 = 𝑇 (
1000 𝑚𝑏

𝑃
)

𝑅𝑑/𝐶𝑃
, where P is pressure, 𝐶𝑃  is specific heat 

of dry air when pressure is constant, 𝑅𝑑  is the individual gas constant for dry air. 

⟹
𝑑𝜃

𝑑𝑧
= (

1000

𝑃
)

𝑅𝑑/𝐶𝑃 𝑑𝑇

𝑑𝑧
+ 𝑇 ∙ 1000𝑅𝑑/𝐶𝑃

𝑑𝑃
(−

𝑅𝑑
𝐶𝑃

)

𝑑𝑧
 

Since 
𝜃

𝑇
= (

1000

𝑃
)

𝑅𝑑/𝐶𝑃
      So: 

𝑑𝜃

𝑑𝑧
=

𝜃

𝑇

𝑑𝑇

𝑑𝑧
−

𝑅𝑑

𝐶𝑃
𝑇

1000𝑅𝑑/𝐶𝑃

𝑃(𝑅𝑑/𝐶𝑃+1)

𝑑𝑃

𝑑𝑧
 

=
𝜃

𝑇

𝑑𝑇

𝑑𝑧
−

𝑅𝑑

𝐶𝑃
𝜃 ∙

1

𝑃

𝑑𝑃

𝑑𝑧
 

From Hydrostatic Equation: 𝑑𝑃 = −𝜌𝑔𝑑𝑧, 𝜌 =
𝑃

𝑅𝑑𝑇
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⟹
𝑑𝑃

𝑑𝑧
= −𝜌𝑔 = −

𝑃𝑔

𝑅𝑑𝑇
 

So  
𝑑𝜃

𝑑𝑧
=

𝜃

𝑇

𝑑𝑇

𝑑𝑧
+

𝑅𝑑

𝐶𝑃

𝜃

𝑃

𝑃𝑔

𝑅𝑑𝑇
=

𝜃

𝑇

𝑑𝑇

𝑑𝑧
+

𝜃

𝑇

𝑔

𝐶𝑃
 

𝑑𝜃

𝑑𝑧
=

𝜃

𝑇
(

𝑑𝑇

𝑑𝑧
+

𝑔

𝐶𝑃
) 

Since: Dry adiabatic lapse rate  Γ𝑑 =
𝑔

𝐶𝑃
 

Environment lapse rate Γ = −
𝑑𝑇

𝑑𝑧
 

So: 
𝑑𝜃

𝑑𝑧
=

𝜃

𝑇
(Γ𝑑 − Γ)  since −

𝑑𝜃

𝑑𝑃
∝

𝑑𝜃

𝑑𝑧
 

 

⟹ −
𝑑𝜃

𝑑𝑃
∝ (Γ𝑑 − Γ), which is the stability for dry air: 

    

Physical Interpretation: 

• 𝑃𝑉 is a function of: 

1) Absolute Vorticity 𝜁𝜃 + 𝑓 

2) Static Stability (−
𝑑𝜃

𝑑𝑃
) 

• If 𝑃𝑉 is conserved, then an increase of either (𝜁𝜃 + 𝑓) or −
𝑑𝜃

𝑑𝑃
 must lead to a decrease of 

the other (or vice versa). 

• If a fluid column is stretched, the absolute vorticity must increase because : 

Stretching increases the spacing between 𝜃 surfaces, 

causing: 

−
𝑑𝜃

𝑑𝑃
 decreases 

⟹ (𝜁𝜃 + 𝑓) increases 

 

• If a fluid column is squished, the absolute vorticity must decrease because: 

Squishing decreases the spacing between 𝜃 surfaces, 

causing: 

−
𝑑𝜃

𝑑𝑃
 increases 

 

⟹ (𝜁𝜃 + 𝑓) deceases 
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Applications of 𝑃𝑉: 

• Example 1: What happens when an air column moves from a region of low static stability 

to a region of high static stability? 

o If static stability is increasing, then −
𝑑𝜃

𝑑𝑃
 is increasing ⟹ the 𝜃 surface must be 

getting closer together: 

Column is squished ⟶ parcel must decrease the 

absolute vorticity. 

Since 𝑃𝑉 = 𝑔(𝜁𝜃 + 𝑓) (−
𝑑𝜃

𝑑𝑃
) = constant, 

−
𝑑𝜃

𝑑𝑃
 increases ⟹ (𝜁𝜃 + 𝑓) must decrease. 

• Example 2 (Holton’s book, Page 100-102): Zonal westerly flow with no initial relative 

vorticity impinging on a mountain barrier — Lee cyclone genesis 

 
 

Position −
𝑑𝜃

𝑑𝑃
 𝑓 𝜁𝜃(∽ 𝜁) 

1 > 0 𝑓0 (doesn’t change much) = 0 
1-2 Decreasing (stretching) 𝑓0 must increase 

2  𝑓0 𝜁 > 0 
2-3 Increasing (squishing) 𝑓0 must decrease 

3  𝑓0 𝜁 < 0 
3-4 Decreasing (stretching) 𝑓0 must increase 

4  𝑓0 𝜁 > 0 
4-5 Increasing (squishing) 𝑓0 must decrease 

5  𝑓0 𝜁 < 0 

 

Result: Steady westerly flow over a large-scale mountain barrier will result in a cyclonic 

flow pattern immediately to the east of the barrier (the lee side through) followed by an 

alternating series of ridges & troughs. 

Please read Holton’s book, Page 99-102 for easterly flow example. 
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• Example 3: What is the impact of equator ward motion of an air column that has constant 

relative vorticity. 

𝑃𝑉 = −𝑔 (
𝑑𝜃

𝑑𝑃
) (𝜁𝜃 + 𝑓) = constant 

𝑔 = constant & 𝜁𝜃 = constant (for this example)  

⟹  (−
𝑑𝜃

𝑑𝑃
)

𝐴
𝑓𝐴 = (−

𝑑𝜃

𝑑𝑃
)

𝐵
𝑓𝐵 = constant               

As parcel moves equatorward, 𝑓 decreases. 

⟹ 𝑓𝐵 < 𝑓𝐴, and −
𝑑𝜃

𝑑𝑃
 must increase. So that 

(−
𝑑𝜃

𝑑𝑃
)

𝐵
> (−

𝑑𝜃

𝑑𝑃
)

𝐴
⟶ stability increases  

⟶  𝜃 contours move closer together. 

 

⟹ If no change in relative vorticity is allowed, cold air moving equatorward will sink & warm. 

Synoptic Application: Air moving equatorward will sink & warm if no relative vorticity is generated, 

while air moving poleward will rise & cool.  


