MET 3502/5561 Synoptic Meteorology

Lecture 9: Math Review: Derivatives and Integration

Professor Takes a Stroll

How do you measure his speed?

About Derivatives

- They are a way of calculating the rate of change of a known function.
- Most powerful physical laws—including those that describe the atmosphere---are formulated in terms of derivatives
- There are well-defined ways of going from known derivatives back to the function that they represent
- First, we'll focus on derivatives...

For example, the derivative of x^2

Derivatives of Powers

- Derivatives of xⁿ work the same way
- $dx^n/dx = nx^{n-1}$
- Works even if n is negative or not a whole number
- For example $dx^{\frac{1}{2}}/dx = \frac{1}{2}(1/x^{\frac{1}{2}})$
- Of course :

 $dx^{0}/dt = d \text{ constant }/dt = 0$

Derivative of sines & cosines

- $d (\sin x)/dx = \cos x$
- d $(\cos x)/dx = -\sin x$
- Derived as for powers, but using trig sum-of-angle formulas
- $d^2 (\sin x)/dx^2 = -\sin x$
- $d^2 (\cos x)/dx^2 = -\cos x$

Exponential Function

- $e^x = \exp\{x\} = (2.71828...)^x$
- e is Euler's number, or the base of the natural logarithms
- $e^{x} * e^{y} = e^{x+y}$
- $(e^{x})^{n} = e^{nx}$
- $de^{x}/dx = e^{x}$
- Natural logarithm is the inverse of exponential
- $\ln(e^x) = x$
- $\ln x + \ln y = \ln xy$
- $n \ln x = \ln x^n$
- $d(\ln x)/dx = 1/x$

Some Other Calculus Rules

- Derivative of a sum
 o d(x + y)/dt = dx/dt + dy/dt
- Derivative of a product
 dxy/dt = x dy/dt + (dx/dt) y
- Chain rule for a function of a function: d f(g(t))/dt = (df/dg)*(dg/dt) Example: d(exp{-kx²})/dx =exp{-kx²} (-2kx) or d(sin kx) = k cos kx

Partial derivatives: Differentiate a function of several variables only by the specified variable, keeping all others constant

Let
$$g(x, y, z) = xy^2 z^3$$
, then
 $\frac{\partial g}{\partial x} = y^2 z^3$, $\frac{\partial g}{\partial y} = 2xyz^3$, and
 $\frac{\partial g}{\partial x} = 3xy^2 z^2$.

Summary of Derivatives

- Derivatives represent rates of change of functions.
- Easily remembered recipes for calculating them from functions:

>d xⁿ/dx = nxⁿ⁻¹

>d(cos x)/dx = -sinx; d(sin x)/dx = cos x

>d e^x/dx = e^x;d(ln x)/dx = 1/x

- Chain rule
- Rules for sums and products
- Partial derivatives

Integration is the opposite of differentiation—the anitderivative

$$F(x) = \int \frac{dF(x)}{dx} dx + \text{constant, or}$$
$$f(x) = \frac{d}{dx} \left(\int f(x) dx + \text{constant} \right)$$

Where f(x) is any function of x

Geometric Meaning of Derivative

- Geometrically, the derivative of a function f(x) can be interpreted as the slope of the curve of the mathematical function f(x) plotted as a function of x.
- The derivative can give you a precise (x)instantaneous value for the rate 3.0 010 1.54.05.0 of change of some physical $f(x) = \ln(x)$ parameters, such as speed, acceleration, force, etc. 15

Х

Geometric Meaning of Integral

- Geometrically, the integral of the function f(x) over the range x=a to x=b gives the area under the curve between these two points.
- The integral gives you a mathematical way of drawing an infinite number of blocks and getting a precise analytical expression for the area.

We can turn the derivatives that we already know into integrals

$$\int x^n dx = \frac{1}{n+1} \int (n+1)x^n dx = \frac{x^{n+1}}{n+1} + \text{constant}$$
$$\int \sin x \, dx = -\cos x + \text{constant}$$
$$\int \cos x \, dx = \sin x + \text{constant}$$
$$\int e^x dx = e^x + \text{constant}$$
$$\int \frac{dx}{x} = \ln x + \text{constant}$$

Basic Rules of Integration

- 1. $\int cf(x)dx = c \int f(x)dx$, c is a constant
- 2. $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
- 3. $\int_{a}^{b} f(x)dx = F(b) F(a), \text{ where } F(x) = \int f(x)dx$

$$4. \ \int_a^a f(x) dx = 0$$

5. $\int_a^b f(x)dx = -\int_b^a f(x)dx$

6.
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$7 \quad \int^b c dx = c(h-a)$$

Back to the Professor's Stroll: integrating his acceleration gets speed

Integrating his speed gets distance

Summary of Integration

- Integration is the reverse of differentiation
- Areas under curves
- Constants of integration determined by limits
- Standard formulas