MET 3502/5561 Synoptic Meteorology

Lecture 9: Math Review:
Derivatives and Integration

Professor Takes a Stroll

How do you measure his speed?

About Derivatives

- They are a way of calculating the rate of change of a known function.
- Most powerful physical laws-including those that describe the atmosphere---are formulated in terms of derivatives
- There are well-defined ways of going from known derivatives back to the function that they represent
- First, we'll focus on derivatives...

For example, the derivative of x^{2}

$$
\begin{aligned}
\frac{d x^{2}}{d x} & =\frac{(x+\Delta x)^{2}-x^{2}}{\Delta x} \\
& =\frac{x^{2}+2 x \Delta x+(\Delta x)^{2}-x^{2}}{\Delta x} \\
& =2 x+\Delta x \cong 2 x
\end{aligned}
$$

Derivatives of Powers

- Derivatives of x^{n} work the same way
- $\mathrm{d} x^{n} / \mathrm{dx}=n x^{n-1}$
- Works even if n is negative or not a whole number
- For example

$$
\mathrm{d} x^{1 / 2} / d x=1 / 2\left(1 / x^{1 / 2}\right)
$$

- Of course :
$\mathrm{dx} 0 / \mathrm{dt}=\mathrm{d}$ constant $/ \mathrm{dt}=0$

Derivative of sines \& cosines

- $d(\sin x) / d x=\cos x$
- $d(\cos x) / d x=-\sin x$
- Derived as for powers, but using trig sum-of-angle formulas
- $d^{2}(\sin x) / d x^{2}=-\sin x$
- $d^{2}(\cos x) / d x^{2}=-\cos x$

Exponential Function

- $\mathrm{e}^{x}=\exp \{x\}=(2.71828 \ldots)^{x}$
- e is Euler's number, or the base of the natural logarithms
- $e^{x *} e^{y}=e^{x+y}$
- $\left(\mathrm{e}^{x}\right)^{n}=\mathrm{e}^{\mathrm{nx}}$
- $\mathrm{de}^{x} / \mathrm{d} x=e^{x}$
- Natural logarithm is the inverse of exponential
- $\ln \left(\mathrm{e}^{x}\right)=x$
- $\ln x+\ln y=\ln x y$
- $n \ln x=\ln x^{n}$
- $\mathrm{d}(\ln x) / \mathrm{d} x=1 / x$

Some Other Calculus Rules

- Derivative of a sum
$\circ \mathrm{d}(x+y) / \mathrm{d} t=\mathrm{d} x / \mathrm{d} t+\mathrm{d} y / \mathrm{d} t$
- Derivative of a product $\mathrm{d} x y / \mathrm{d} t=x \mathrm{~d} y / \mathrm{d} t+(\mathrm{d} x / \mathrm{d} t) y$
- Chain rule for a function of a function: $\mathrm{d} f(g(t)) / \mathrm{d} t=(\mathrm{d} f / \mathrm{d} g)^{*}(\mathrm{~d} g / \mathrm{d} t)$
Example: $\mathrm{d}\left(\exp \left\{-k x^{2}\right\}\right) / d x=\exp \left\{-k x^{2}\right\}(-2 k x)$ or $\mathrm{d}(\sin k x)=k \cos k x$

Partial derivatives: Differentiate a function of several variables only by the specified variable, keeping all others constant

$$
\begin{aligned}
& \text { Let } g(x, y, z)=x y^{2} z^{3}, \text { then } \\
& \frac{\partial \mathrm{g}}{\partial x}=y^{2} z^{3}, \quad \frac{\partial \mathrm{~g}}{\partial y}=2 x y z^{3}, \text { and } \\
& \frac{\partial \mathrm{g}}{\partial x}=3 x y^{2} z^{2}
\end{aligned}
$$

Summary of Derivatives

- Derivatives represent rates of change of functions.
- Easily remembered recipes for calculating them from functions:
$>\mathrm{dx}^{\mathrm{n}} / \mathrm{dx}=\mathrm{nx} \mathrm{n}^{\mathrm{-1}}$
$>d(\cos x) / d x=-\sin x ; d(\sin x) / d x=\cos x$
$>d e^{x} / d x=e^{x} ; d(\ln x) / d x=1 / x$
- Chain rule
- Rules for sums and products
- Partial derivatives

Integration is the opposite of differentiation-the anitderivative

$$
\begin{aligned}
& F(x)=\int \frac{d F(x)}{d x} d x+\text { constant, or } \\
& f(x)=\frac{d}{d x}\left(\int f(x) d x+\text { constant }\right)
\end{aligned}
$$

Where $f(x)$ is any function of x

Geometric Meaning of Derivative

- Geometrically, the derivative of a function $f(x)$ can be interpreted as the slope of the curve of the mathematical function $\mathrm{f}(\mathrm{x})$ plotted as a function of x .
- The derivative can give you a precise instantaneous value for the rate of change of some physical parameters, such as speed, acceleration,
 force, etc.

Geometric Meaning of Integral

- Geometrically, the integral of the function $f(x)$ over the range $x=a$ to $x=b$ gives the area under the curve between these two points.
- The integral gives you a mathematical way of drawing an infinite number of blocks and getting a precise analytical expression for the area.

We can turn the derivatives that we

 already know into integrals$\int x^{n} d x=\frac{1}{n+1} \int(n+1) x^{n} d x=\frac{x^{n+1}}{n+1}+$ constant
$\int \sin x d x=-\cos x+$ constant
$\int \cos x d x=\sin x+$ constant
$\int e^{x} d x=e^{x}+$ constant
$\int \frac{d x}{x}=\ln x+$ constant

Basic Rules of Integration

1. $\int c f(x) d x=c \int f(x) d x, \mathrm{c}$ is a constant
2. $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$
3. $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where $F(x)=$ $\int f(x) d x$
4. $\int_{a}^{a} f(x) d x=0$
5. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
6. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
$7 \int^{b} r d x=r(h-a)$

Back to the Professor's Stroll: integrating his acceleration gets speed

Integrating his speed gets distance

Summary of Integration

- Integration is the reverse of differentiation
- Areas under curves
- Constants of integration determined by limits
- Standard formulas

