Instructor: Dr. Haiyan Jiang; Office: AHC5 371; Phone: 305-348-2984; Email: haiyan.jiang@fiu.edu.
Time: Tu/Th, 11:00 AM-12:15 PM
Location: AHC5 357
Office hours: Tu, 12:15 PM-1:15 PM or by appointment
Course Web Site: http://faculty.fiu.edu/~hajian/MET4300/MET4300.html

Course overview:

This course focuses on introducing thunderstorms, tornadoes, squall lines, mesoscale convection systems, and their interactions with synoptic scale weather. We will also discuss impact synoptic scale weather, such as frontal cyclones, blizzards, and cold waves. We will also look at methods of observing, analyzing, and predicting convective and mesoscale weather including the interpretation of satellite and radar images. A key reason for this course is to understand middle-latitude, mesoscale weather systems. By “mesoscale” we mean storms that are significantly smaller than frontal cyclones (i.e. typical horizontal length < 1000 km) and have typical lifetimes shorter than a day. These systems are dominated by convection. Their winds are not geostrophic. Mesoscale weather is dramatic, spectacular, and sometimes deadly. Graduate students will have the opportunity to work on a research-related literature review and term paper reports to increase their ability to utilize knowledge learned in their research/thesis work.

Prerequisite: General Meteorology (or instructor’s permission).

Textbook:

Grading:

The final numeric grades will be determined according to the following table:

<table>
<thead>
<tr>
<th>Undergraduate Students:</th>
<th>Graduate Students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class participation</td>
<td>Class participation</td>
</tr>
<tr>
<td>Exam #1 20%</td>
<td>Exam #1 20%</td>
</tr>
<tr>
<td>Exam #2 20%</td>
<td>Exam #2 20%</td>
</tr>
<tr>
<td>Final exam 50%</td>
<td>Final exam 40%</td>
</tr>
<tr>
<td>Total 100%</td>
<td>Final term paper 10%</td>
</tr>
<tr>
<td>Total 100%</td>
<td></td>
</tr>
</tbody>
</table>

Course lectures:

Electronic portions (pdf files) of course lectures will be provided on the class website for download after the lecture is given so that you can review. Notes on the board may or may not be posted, so if you miss class, please see a fellow student. Exercises will be given in class after each chapter and will be posted online as well.
Tentative course schedule:

January
Week 1: Jan. 8 (Tu) & Jan. 10 (Th)
 Lecture 1 Course introduction
 Lecture 2 Properties of the atmosphere (CH1)
 Lecture 3 Meteorological measurements (CH2)
Week 2: Jan. 15 (Tu) & Jan. 17 (Th)
 Lecture 4 Radar and satellite (CH2)
 Lecture 5 Weather maps (CH3)
 Lecture 6 Numerical models (CH4)
Week 3: Jan. 22 (Tu) & Jan. 24 (Th)
 Lecture 7 Climate and climate change (CH5)
 Lecture 8 Atmospheric stability and stability indices (CH6)
 Lecture 9 Forces and balanced motions (CH7)
Week 4: Jan. 29 (Tu) & Jan. 31 (Th)
 Lecture 10 Pressure systems (CH8)
 Lecture 11 Airmasses and fronts (CH9)
 Lecture 12 Frontal cyclones in the lee of the Rockies (Lee cyclones, CH10)

February
Week 5: Feb. 5 (Tu) & Feb. 7 (Th)
 Lecture 13 Frontal cyclones on the east and Gulf coasts (Nor’easters, CH11)
 Lecture 14 Exam #1 Review (Feb. 5, Tu)
 Lecture 15 Exam #1 (Feb. 7, Th)
Week 6: Feb. 12 (Tu) & Feb. 14 (Th)
 Exam#1 answers and explanations
 Lecture 16 Freezing precipitation and ice storms (Ch 12)
 Lecture 17 Lake-effect snowstorms (CH13)
Week 7: Feb. 19 (Tu) & Feb. 21 (Th)
 Lecture 18 Cold waves (CH14)
 Lecture 19 Blizzards (CH15)
 Lecture 20 Mountain snowstorms (CH16)
Week 8: Feb. 26. (Tu) & Feb. 28 (Th)
 Lecture 21 Mountain windstorms (CH17)
 Lecture 22 Air mass & multicell thunderstorms (CH18)
 Lecture 23 Mesoscale convective complexes (CH18)

March
Week 9: Mar. 5 (Tu) & Mar. 7 (Th)
 Lecture 24 Squall lines (CH18)
 Lecture 25 Supercell thunderstorms (CH18)
 Lecture 26 Tornadoes I (CH19)
Week 10: Mar. 12 (Tu) & Mar. 14 (Th)
 Spring Break, NO CLASS
Week 11: Mar. 19 (Tu) & Mar. 21 (Th)
 Lecture 27 Tornadoes II (CH19)
 Lecture 28 Tornadoes III (CH19)
 Lecture 29 Tornadoes IV (CH19)
Week 12: Mar. 26 (Tu) & Mar. 28 (Th)
Lecture 30 Exam #2 review (Mar. 26, Tu)
Lecture 31 Exam # 2 (Mar. 28, Th)

April
Week 13: Apr. 2 (Tu) & Apr. 4 (Th)
Exam#2 answers and explanations
Lecture 32 Hailstorms (CH20)
Lecture 33 Lightning (CH21)
Week 14: Apr. 9 (Tu) & Apr. 11 (Th)
Lecture 34 Downbursts (CH22)
Lecture 35 Final review (Apr. 11, Th)
Term-Paper Presentations for Graduate Students on Apr. 11 (Th)
Week 15: Apr. 16 (Tu) & Apr. 18 (Th)
Reading week, No class

Final exam: Thursday, April 25, 9:45 am-11:45 am