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Lecture 5 Emissions 
Supplemental Reading: Kidder & Vonder Haar’s book (Chapter 3.2), Petty’s textbook (Chapter 6) 

What is emission? 

• Emission is the process by which some of the internal energy of a material is converted 

into radiant energy. 

• All materials above absolute zero (0 Kelvin, K) in temperature emits radiation. 

• Examples: 

1) Our own bodies lose heat energy through emission of radiation. We do not 

notice because of a near-balance between heat we lose via emission and that 

we absorb from our surroundings. 

2) A burning wood stove radiates heat that you can feel from far. 

3) Glowing embers in a fireplace —— visible emission 

Blackbody: is the perfect emitter, which emits the maximum amount of radiation at each 

wavelength. 

• A blackbody is a hypothetical body comprising a sufficient number of molecules 

absorbing and emitting EM radiation in all parts of the EM spectrum so that: 

1) All incident radiation is completely absorbed. 

2) In all wavelength bands and in all directions, the maximum possible emission is 

realized. 

• Properties of blackbody radiation 

1) Blackbody radiation is uniquely determined by the temperature of the emitter. 

2) For a given temperature, the radiant energy emitted is the maximum possible at 

all wave lengths. 

3) The radiation is isotropic. 

The Planck’s Function: 

• The intensity of radiation emitted by a blackbody is given by Planck’s Function. 

• An object having temperature 𝑇 will generally emit radiation at all possible wavelengths. 

However, for any particular wavelength 𝜆, there is a hard upper bound on the amount 

of that radiation. The function of 𝑇 and  𝜆 that gives that upper bound is called Planck’s 

function. 

• Derivation: 

Using the quantized theory, Planck postulated that 

Δ𝐸 = Δ𝑛 ⋅ ℎ𝑓 (E is energy, n is any integer, h is Planck’s constant, f is frequency) 

Hence, the radiation emitted or absorbed by individual molecules is quantized in 

photons that carry energy in integral multiples of ℎ𝑓. 

With this assumption, Planck showed 



 2 

𝐵𝜆(𝑇) =
2ℎ𝑐2

𝜆5(𝑒

ℎ𝑐
𝜆𝑘𝐵𝑇−1)

     (Nobel Prize, 1918) 

Where 𝐵𝜆 is radiance (intensity) in 𝑊𝑚−2𝑆𝑟−1𝜇𝑚−1, 

 𝑘𝐵  is Boltzmann’s constant, 𝑘𝐵 = 1.381 𝑥 10−23𝐽𝐾−1 

𝑐 is speed of light, 𝑐 = 2.998 𝑥 108𝑚𝑠−1 

ℎ is Planck’s constant, ℎ = 6.626 𝑥 10−34𝐽𝑠 

 𝑇 is absolute temperature (in Kelvin, K), 𝜆 is wavelength in 𝜇𝑚 

 

  

Fig. 1 Planck’s Function at both short and long wavelength 



 3 

 

Figure 2: Planck’s Function at temperatures typical in the atmosphere 

 

Figure 3: Fraction of total blackbody emission contributed by wavelength smaller than the 

threshold value indicated on the vertical axis 

Wien’s Displacement Law: 

• For any given absolute temperature, Planck’s function has its peak at a wavelength that 

is inversely proportional to that temperature. 
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• Thus, peak emission from a cool object, like the earth, occurs at much longer 

wavelengths that that from a very hot object, like the sun. 

• Equation: 

The wavelength of maximum radiance (intensity) is: 

𝜆𝑚 =
2897

𝑇
 [𝜇𝑚]   (Nobel Prize, 1911) 

Where 𝑇 is temperature in Kelvin (K). 

• Derivation: 

To find the wavelength of maximum radiance, we need to find the 𝜆 which satisfies: 

𝑑𝐵𝜆(𝑇)

𝑑𝜆
= 0 

From Planck’s function, assume 𝑒
ℎ𝑐

𝑘𝐵𝑇𝜆 ≫ 1,  

then 
𝑑

𝑑𝜆
(

2ℎ𝑐2

𝜆5𝑒

ℎ𝑐
𝜆𝑚𝑘𝐵𝑇

) = 0, 

Because 
𝑑

𝑑𝜆
(2ℎ𝑐2𝜆−5𝑒

−
ℎ𝑐

𝑘𝐵𝑇𝜆𝑚) = 2ℎ𝑐2 [−5𝜆−6𝑒
−

ℎ𝑐

𝑘𝐵𝑇𝜆𝑚 + 𝜆−7 ∙
ℎ𝑐

𝑘𝑇
𝑒

−
ℎ𝑐

𝑘𝐵𝑇𝜆𝑚] 

= 2ℎ𝑐2 [

ℎ𝑐

𝑘𝐵𝑇

𝜆7𝑒

ℎ𝑐
𝑘𝐵𝑇𝜆𝑚

−
5

𝜆6𝑒

ℎ𝑐
𝑘𝐵𝑇𝜆𝑚

] =
2ℎ𝑐2

𝜆𝑚
6 𝑒

ℎ𝑐
𝑘𝐵𝑇𝜆𝑚

[
ℎ𝑐

𝜆𝑚𝑘𝐵𝑇
− 5], 

2ℎ𝑐2

𝜆𝑚
6 𝑒

ℎ𝑐
𝑘𝐵𝑇𝜆𝑚

[
ℎ𝑐

𝜆𝑚𝑘𝐵𝑇
− 5] = 0, 

since 
2ℎ𝑐2

𝜆𝑚
6 𝑒

ℎ𝑐
𝑘𝐵𝑇𝜆𝑚

≠ 0, so: 
ℎ𝑐

𝜆𝑚𝑘𝐵𝑇
− 5 = 0, so that 𝜆𝑚 =

ℎ𝑐

5𝑘𝐵𝑇
=

𝑐

𝑇
,  

where 𝑐 =
ℎ𝑐

5𝑘𝐵
= 2897𝜇𝑚 ∙ 𝐾. 

 

For the sum, 𝑇 = 6000𝐾, 𝜆𝑚 =
2897𝜇𝑚∙𝐾

6000𝐾
= 0.48𝜇𝑚 (Blue) 

For the surface of the earth, 𝑇 = 288𝐾, 𝜆𝑚 =
2897𝜇𝑚∙𝐾

288𝐾
= 10𝜇𝑚 

For lightning, 𝑇 = 30,000𝐾, 𝜆𝑚 =
2897𝜇𝑚∙𝐾

30,000𝐾
≈ 0.1𝜇𝑚. 

Stefan-Boltzmann Law 

• By integrating Planck’s function over all possible wavelengths, you get the Stefan-

Boltzmann Law, which states that the theoretical maximum amount of total radiation 

that can be emitted by an object is proportional to the 4th power of its absolute 

temperature. 

• Equation: 

The total broadband radiant exitance (or broadband flux density) emitted by a 

blackbody is obtain by integrating 𝐵𝜆(𝑇) over all wavelengths (𝜆) and over the 2𝜋 

Steradians of solid angle of one hemisphere: 

𝐹𝐵𝐵(𝑇) = ∫ ∫ ∫ 𝐵𝜆(𝑇)
∞

0

𝑑𝜆

𝜋
2

0

cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜑
2𝜋

0

= 𝜋 ∫ 𝐵𝜆(𝑇)𝑑𝜆
∞

0

= 𝜎𝑇4 

Where 𝜎 =
2𝜋5𝑘𝐵

4

15𝑐2ℎ3 ≈ 5.67 × 10−8 𝑊

𝑚2𝐾4 , 𝜎 is the Stefan-Boltzmann constant. 

• Implication: Emissions differ sharply between cold and warm objects. 
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Rayleigh-Jeans Approximation 

In microwave band, wavelength 𝜆~1𝑚𝑚 or longer, Planck Function becomes: 

𝐵𝜆(𝑇) =
2ℎ𝑐2

𝜆5(𝑒

ℎ𝑐
𝜆𝑘𝐵𝑇−1)

=
𝐶1𝜆−5

𝑒
𝐶2
𝜆𝑇−1

, 

where 𝐶1 = 2ℎ𝑐2 ,𝐶2 =  
ℎ𝑐

𝑘𝐵
. 

For temperatures encountered on the Earth and its atmosphere at microwave (𝑚𝑚 or 𝑐𝑚 

wavelengths) band, 

𝐶2

𝜆𝑇
≪ 1 ⇒ 𝑒

𝐶2
𝜆𝑇 ≈ 1 +

𝐶2

𝜆𝑇
 

⇒ 𝐵𝜆(𝑇) ≈
𝐶1𝜆−5

1 +
𝐶2
𝜆𝑇 − 1

=
𝐶1

𝐶2
𝜆−4𝑇 =

2𝑐𝑘𝐵

𝜆4 𝑇 

Where c is speed of light, 𝑘𝐵  is Boltzmann’s constant 

Interpretation: In the microwave band, radiance/intensity of blackbody is simply proportional to 

temperature for blackbody, and to brightness temperature for non-blackbody (see the definition 

of brightness temperature below). 

Emissivity: 

• Why defines emissivity? 

1) Planck’s function 𝐵𝜆(𝑇) describes thermal emission from a blackbody, which is 

an idealization. 

2) Real objects are not blackbody. 

3) We must account for the degree to which real surfaces deviate from the ideal of 

a blackbody. 

• Definition: Emissivity is the ratio of what is emitted by a given surface to what would be 

emitted if it were a blackbody. 

• Two cases: 

1) The emissivity at a single wavelength: Monochromatic Emissivity 

2) Emissivity over a broad range of wavelengths: Graybody Emissivity 

Monochromatic Emissivity: 

𝜀𝜆 =
𝐼𝜆

𝐵𝜆(𝑇)
 is the emissivity at a single wavelength 𝜆. Here 𝐼𝜆 is the real radiance by a surface that 

emits its radiation at a given wavelength 𝜆 and temperature 𝑇. 𝐵𝜆(𝑇) is the Planck function at 

the same 𝜆 and 𝑇. 

𝜀𝜆 might be a function of 𝑇, 𝜃, 𝜑 also. 𝜃 is zenith angle, 𝜑 is azimuthal angle (see Lec 3: Spherical 

Polar Coordinates). 

In general, 0 ≤ 𝜀𝜆 ≤ 1. When 𝜀𝜆 = 1, the surface is effectively a blackbody at that wavelength. 
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Graybody Emissivity 𝜀: is the ratio of the observed broadband radiant flux 𝐹 emitted by a 

surface to that predicted by Stefan-Boltzmann’s Law: 

𝜀 ≡
𝐹

𝜎𝑇4 

Graybody:  Assume the emissivity of the object is not dependent on wavelength. In 

reality, no surface is truly “gray” over the full EM spectrum. So it’s useful to apply the 

concept of graybody emissivity to a more limited range of wavelength [𝜆1, 𝜆2], then  

𝜀(𝜆1, 𝜆2) =
𝐹(𝜆1, 𝜆2)

𝐹𝐵(𝜆1, 𝜆2)
 

Where 𝐹(𝜆1, 𝜆2) is the actual flux emitted by the surface integrated between 𝜆1 and  𝜆2, 

and  

𝐹𝐵(𝜆1, 𝜆2) ≡ 𝜋 ∫ 𝐵𝜆(𝑇)𝑑𝜆
𝜆2

𝜆1

 

Examples: (Petty’s textbook, table 6.1) In IR band, 𝜀𝑤𝑎𝑡𝑒𝑟 = 0.9 − 0.96,  𝜀𝑖𝑐𝑒 = 0.96, 

𝜀𝑑𝑟𝑦 𝑠𝑎𝑛𝑑 = 0.84 − 0.9  

Brightness Temperature: is the equivalent blackbody temperature when you know the intensity 

𝐼𝜆 of radiation at a given wavelength 𝜆. 

𝑇𝐵 ≡ 𝐵𝜆
−1(𝐼𝜆) 

Where 𝐵𝜆
−1 is the inverse of the Planck function applied to the observed radiance. 

• We can convert any monochromatic intensity to a 𝑇𝐵  because Planck’s function 

describes a one-one relationship between the intensity of radiation emitted by a 

blackbody at a given wavelength and the blackbody’s temperature. 

• Importance of brightness temperature in remote sensing: 

− At thermal IR band, most land & water surfaces and dense cloud layers have 

 𝜀 ≈ 1, which means: 

𝑇𝐵 ≈ actual temperature 

− At microwave band: 

1) The emissivity of some surfaces (especially water and glacial ice) is 

substantially less than 1, so  

    𝑇𝐵 ≪ actual physical temperature 

2) Using the Rayleigh-Jeans approximation, 

𝐵𝜆(𝑇) ≈
2𝑐𝑘𝐵

𝜆4 𝑇 ⇒ 𝑇 =
𝐵𝜆(𝑇)𝜆4

2𝑐𝑘𝐵
 

⇒  𝑇𝐵 =
𝐼𝜆𝜆4

2𝑐𝑘𝐵
 ⟹  𝑇𝐵 ∝ 𝐼𝜆 

So 𝑇𝐵  can be a convenient substitute for radiance 𝐼𝜆 in radiative transfer 

calculations. 
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