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Lecture 8: The Radiative Transfer Equation 
 

Supplemental Reading: Kidder & Vonder Haar’s book (Chapter 3.3), Petty’s textbook (ch11.2) 

Concept: consider radiation incident on a differential volume of a medium (atmosphere or other 

material). 

 

For the Radiative Transfer Equation, what do we want to get? 

− The change in radiance 𝐼𝜆 as the radiation passes through the volume. 

Q: If no material in the volume, will the radiance change? 

A: No. 

Which processes do we need to consider? 

𝐴: Radiation from the beam can be absorbed by the material. 

𝐵: Radiation can be emitted by the material. 

𝐶: Radiation can be scattered out of the beam into other direction. 

𝐷: Radiation from other directions can be scattered into the beam. 

Therefore, the rate of change of radiance with distance, 
𝑑𝐼𝜆

𝑑𝑠
, consists of the above four 

terms: 

𝑑𝐼𝜆

𝑑𝑠
= 𝐴 + 𝐵 + 𝐶 + 𝐷 

Depletion terms: 𝐴 and 𝐶  (remove radiation from the beam) 

Source terms: 𝐵 and 𝐷  (add radiation to the beam) 
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Some scattering/absorption (extinction) parameters needed to derive the Radiative Transfer 

Equation (see Lec 6&7 for details): 

1) Scattering/absorption coefficient: 

𝛽𝑠𝜆 , 𝛽𝑎𝜆            𝑈𝑛𝑖𝑡: 𝑚−1 
 

2) Mass scattering/absorption coefficient (Specific scattering/absorption cross-section) 

𝑘𝑠𝜆 , 𝑘𝑎𝜆          𝑈𝑛𝑖𝑡: 
𝑎𝑟𝑒𝑎

𝑚𝑎𝑠𝑠
 

𝛽𝑠𝜆 = 𝜌𝑘𝑠𝜆          𝛽𝑎𝜆 = 𝜌𝑘𝑎𝜆 

       Where 𝜌 is the density of the medium. 

 

3) Extinction coefficient:   𝛽𝑒𝜆 = 𝛽𝑠𝜆 + 𝛽𝑎𝜆       

𝛽𝑒𝜆 is the rate of power attenuated per unit distance due to extinction.                               

                                    

4) Mass extinction coefficient   𝑘𝑒𝜆 = 𝑘𝑎𝜆 + 𝑘𝑠𝜆  and  𝛽𝑒𝜆 = 𝜌𝑘𝑒𝜆  

Derivation of the Radiative Transfer Equation: 

1. From Lambert’s Law with both absorption and scattering as extinction, we can get depletion 

terms 𝐴 and 𝐶: 𝑑𝐼𝜆𝑒𝑥𝑡  
𝑑𝐼𝜆𝑒𝑥𝑡

𝐼𝜆
= −𝜌𝑘𝑒𝜆𝑑𝑠 

⇒ 𝑑𝐼𝜆𝑒𝑥𝑡 = −𝜌𝑘𝑒𝜆𝐼𝜆𝑑𝑠 = −𝛽𝑒𝜆𝐼𝜆𝑑𝑠 

 

2. To get the emission term 𝐵, use Kirchhoff’s Law under LTE, and Planck’s function 𝐵𝜆(𝑇): 

The differential emissivity:                   

𝑑𝜀𝜆 =
𝑑𝐼𝜆𝑒𝑚𝑖𝑡

𝐵𝜆(𝑇)
 

According to Kirchhoff’s Law:              

𝑑𝑎𝜆 = 𝑑𝜀𝜆, where 𝑎𝜆  is the absorptivity. 

⇒ 𝑑𝐼𝜆𝑒𝑚𝑖𝑡 = 𝐵𝜆(𝑇)𝑑𝑎𝜆 

From Lambert’s Law, 𝑑𝑎𝜆 = 𝜌𝑘𝑎𝜆𝑑𝑠, so: 

𝐼𝜆𝑒𝑚𝑖𝑡 = 𝐵𝜆(𝑇) ∙ 𝜌𝑘𝑎𝜆𝑑𝑠 = 𝛽𝑎𝜆𝐵𝜆(𝑇)𝑑𝑠 

 

3. Term 𝐷: 𝑑𝐼𝜆𝑠𝑐𝑎𝑡 

Radiation passing through our infinitesimal volume from any direction Ω̂′ can potentially 

contribute scattered radiation in the direction of interest Ω̂. 

 
⇒ All directions must be considered! 
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Phases Function: to describe the angular distribution of scattered energy, we define a non-

dimensional parameter called Phase function 𝑃𝜆(Ω̂, Ω̂′), which corresponds to the fraction 

of radiation scattered by an individual particle from any direction Ω̂′ into direction of 

interest Ω̂. 

 

 

By definition, 
1

4𝜋
∫ 𝑃𝜆(Ω̂, Ω̂′)

 

4𝜋
𝑑Ω′ = 1, the phase function is normalized to unity (1). 

 

 

Single Scattering albedo: 

𝜔𝜆 =
𝑘𝑠𝜆

𝑘𝑒𝜆
=

𝛽𝑠𝜆

𝛽𝑒𝜆
 

which represents the fraction of radiation lost through extinction that is scattered out of the 

beam. Then, 

1−𝜔𝜆 =
𝑘𝑎𝜆

𝑘𝑒𝜆
 

 

because                                                𝑘𝑎𝜆 + 𝑘𝑠𝜆 = 𝑘𝑒𝜆 

 

Therefore, term 𝐷 should be: 

𝑑𝐼𝜆𝑠𝑐𝑎𝑡 =
𝛽𝑠𝜆

4𝜋
∫ 𝑃𝜆(Ω̂, Ω̂′)𝐼𝜆(Ω̂′)𝑑Ω′𝑑𝑠

 

4𝜋

 

because just like what has been expressed in Lambert’s Law, the fractional energy scattered 

is proportional to the mass traversed by the radiation. So, 

𝑑𝐼𝜆𝑠𝑐𝑎𝑡 ∼ 𝐼𝜆𝛽𝑠𝜆𝑑𝑠 

(just like 𝑑𝐼𝜆𝑒𝑥𝑡 ∼ 𝐼𝜆𝛽𝑒𝜆𝑑𝑠) 

But since we need to consider all directions, it must include integration over the phase 

function. So it becomes: 

𝑑𝐼𝜆𝑠𝑐𝑎𝑡 =
𝛽𝑠𝜆

4𝜋
∫ 𝑃𝜆(Ω̂, Ω̂′)𝐼𝜆(Ω̂′)𝑑Ω′𝑑𝑠

 

4𝜋

 

 

4. Final radiative transfer equation: 

𝑑𝐼𝜆 = 𝑑𝐼𝜆𝑒𝑥𝑡 + 𝑑𝐼𝜆𝑒𝑚𝑖𝑡 + 𝑑𝐼𝜆𝑠𝑐𝑎𝑡  

= −𝛽𝑒𝜆𝐼𝜆𝑑𝑠 + 𝛽𝑎𝜆𝐵𝜆(𝑇)𝑑𝑠 +
𝛽𝑠𝜆

4𝜋
∫ 𝑃𝜆(Ω̂, Ω̂′)𝐼𝜆(Ω̂′)𝑑Ω′𝑑𝑠

 

4𝜋

 

Dividing through by 𝑑𝜏𝜆 = 𝛽𝑒𝜆𝑑𝑠                   

(as defined in Lec. 7,  𝜏𝜆 is optical path or thickness, 𝜏𝜆 = ∫ 𝛽𝑒𝜆𝑑𝑠
𝑠

0
) 
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𝑑𝐼𝜆

𝑑𝜏𝜆
= −𝐼𝜆(Ω̂) +

𝛽𝑎𝜆

𝛽𝑒𝜆
𝐵𝜆(𝑇) +

𝜔𝜆

4𝜋
∫ 𝑃𝜆(Ω̂, Ω̂′)𝐼𝜆(Ω̂′)𝑑Ω′

 

4𝜋

 

𝛽𝑎𝜆

𝛽𝑒𝜆
= 1 − 𝜔𝜆 

 

Now we defined a source function: 

𝐽𝜆(Ω̂) = (1 − 𝜔𝜆)𝐵𝜆(𝑇) +
𝜔𝜆

4𝜋
∫ 𝑃𝜆(Ω̂, Ω̂′)𝐼𝜆(Ω̂′)𝑑Ω′

 

4𝜋

 

⇒ Convenient Radiative Transfer Equation: 

𝑑𝐼𝜆(Ω̂)

𝑑𝜏𝜆
= −𝐼𝜆(Ω̂) + 𝐽𝜆(Ω̂) 

 

No-Scattering Equation: 

 According to Petty’s textbook Fig. 12.1, when the size parameter x<0.002, it falls into 

the negligible scattering regime. For example, radiation in IR band passing through air 

molecules fits this condition. In this condition, scattering is negligible. Then:  

single scattering albedo 𝜔𝜆 = 0 

⇒ The radiative transfer equation becomes: 
𝑑𝐼𝜆

𝑑𝜏𝜆
= −𝐼𝜆 + 𝐵𝜆(𝑇) 

 

No-emission Equation: 

 At visible or near-IR band, the atmosphere doesn’t emit significant amount of radiation, 

therefore, 𝐵𝜆(𝑇) can be neglected. Then the radiative transfer equation becomes: 

 

𝑑𝐼𝜆(Ω̂)

𝑑𝜏
= −𝐼𝜆(Ω̂) +

𝜔𝜆

4𝜋
∫ 𝑃𝜆(Ω̂, Ω̂′)𝐼𝜆(Ω̂′)𝑑Ω′

 

4𝜋

 

 

Also, at visible band, it is acceptable to assume absorption in clouds is zero, ⇒  𝜔𝜆 = 1. 

This is because neither liquid water nor water vapor absorbs much radiation in the visible 

band. 
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