1) [30pts] Answer True or False for each:

The set of rational numbers is countable
If $f:\{1,2,3\} \rightarrow\{a, b, c\}$ is onto, it is also one-to-one.
If $A \subseteq \mathbf{Z}$, then $A \sim \mathbf{N}$ (same card'y).
Every 1-1 correspondence f has an inverse function.
If $f: A \rightarrow B$ is $1-1$, then $f(A)=B$ and $f^{-1}(B)=A$.
2) [40pts] 2a) Let $g(x)=\lfloor x\rfloor$. Find $g^{-1}(\{0\})$.

2b) Let $A_{i}=(i, \infty) \subset \mathbf{R}$. Find $\bigcap_{i=1}^{\infty} A_{i}$ and $\bigcup_{i=1}^{\infty} A_{i}$.
3) [30pt] Choose ONE proof. Use sentences (rather than Venn diagrams, etc).
a) Prove that $(0,1)$ is not countable, using Cantor's Diagonal Argument.
b) Prove the absorption law, that $A \cap(A \cup B)=A$.

Remarks and Answers: The average grade among the top 20 was about 75 / 100, which is pretty good. On the whole, the proofs about sets in 3 b were not very good. If you want help with these, please see me or our LA; we might even be able to create a special group session on this. The other problems were mostly good. Unofficial scale:

```
A's 85-100
B's 75-84
C's 65-74
D's 55-64
F's 0-54
```

Also, I have added your 3 quiz scores together to estimate your overall semester grade so far. See the upper right corner of your quiz. This may not be super-accurate, since I don't know yet which quiz grade you will drop, and it doesn't include HW yet either. But it is probably more accurate than just using your 3 letter grades (because the scales so far have been so varied, and rather unusual).

1) TTFTF

$2 \mathrm{a})[0,1)$. This is exercise 2.3.39a, about a pre-image of the floor function.
$2 b) \cap=\emptyset$. I gave partial credit for (∞, ∞), which is pretty bad notation. If you intended the empty set, this is not a good way to write it.
$\cup=(1, \infty)$. I gave partial credit for \mathbf{Z}^{+}or \mathbf{R}. These are wrong, but (probably) indicate having the right idea. See 2.2.48.d.

3a) See text, or lecture notes. About half the class chose 3 a. The results were generally better for 3 a than 3 b , probably because of memorization.

3b) See 2.2.13. Outline: To prove \subseteq, assume $x \in A \cup(A \cap B)$ so that $x \in A$ or $x \in A \cap B$ (so, $\operatorname{ETS} x \in A$). In the first case, the conclusion is obvious, so we may assume $x \in A \cap B$. But this means $x \in A$ (and $x \in B$) so the conclusion is true in this case too. I will leave the proof of the other direction to you.

NOTE: You need to know this style of proof. It is a sequence of sentences, mostly containing some proposition/predicate about x, such as $x \in A$. I gave partial credit for "truth table" proofs, though none I saw were explained enough.

