1) [10 pts] How many bit strings of length 7 contain at least five 1's ?
2) [10 pts] Prove ONE, in the usual paragraph style, including the phrase $x \in$ more than once. Avoid shortcuts, such as quoting stronger theorems about sets (see me, if in doubt about this).
$\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$
If $\bar{A} \subseteq B$, then $\bar{B} \subseteq A$.
3) $[5$ points each $]$ Let $A=\{0,1,2\}$.
a) Give an example of a relation R on A, that is reflexive but not symmetric. You may describe R in words, or by a clearly-labeled matrix, or (di)graph.
b) Give an example of a different relation R on A, that is transitive but not an equivalence relation. If either part of this problem is impossible, explain why.
4) [10 points] Find a Boolean expression in sum-of-minterm form (eg DNF) for the function, $F(x, y, z)=1$ if and only if $x+y=0$.
5) [15 points] Answer True or False:

If $f: A \rightarrow A$ is onto, it must also be one-to-one.
The wheel graph W_{n} for $n \geq 3$ is never bipartite.
The complete graph K_{n} for $n \geq 4$ always has an even number of edges.
The number of different Boolean functions of degree n is always at least 4^{n} (for $n \geq 1$).
The terms of the Fibonacci sequence alternate between odd and even forever.
6) [10 pts] Determine whether the two graphs [below, or on the board] are isomorphic. If so, give an isomorphism f. If not, explain that with some isomorphism invariant.
7) [5 pts$]$ In which order are the vertices of this ordered rooted tree [below or on the board] visited using a postorder traversal?
8) [10 pts] How many paths of length 6 are there in the graph from a to d ? The following calculation may help a little.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)^{3}=\left(\begin{array}{llll}
0 & 3 & 3 & 0 \\
3 & 0 & 0 & 3 \\
3 & 0 & 0 & 3 \\
0 & 3 & 3 & 0
\end{array}\right)
$$

9) [10 pts$]$ Use a K-map to minimize this expression, $x \overline{y z}+\overline{x y z}+\bar{x} y \bar{z}+\overline{x y} z+x \bar{y} z$. Check that you can read this clearly: there should be 10 letters over-lined, and $\overline{y z}$ means $\bar{y} \cdot \bar{z}$. If you can do this with QM (instead of a K-map), this problem is worth +2 points extra credit. Please don't do it both ways.
10) [5 pts] Define $f: N \rightarrow Z$ recursively by $f(0)=1$, and $f(n)=-n f(n-1)$ for $n \geq 1$. Find $S=f^{-1}(N)$ (eg, the pre-image; describe S in words, or perhaps by a formula).
11) [5 pts$]$ Prove that Z is countable. You may include a diagram, a matrix, arrows, lists, or a table (not all these seem like very good ideas) but include enough words to explain your thinking.

Bonus): Explain why, at every party with 100 people, there is a pair of people who know the same number of other people.

Remarks and Answers: The average was about 66 / 100, which is fairly normal. The results were poor on problems 8 and 11, and very poor on 10 , but pretty good otherwise. Fortunately, the worst results were on 5 point problems. I have not yet set the scale for the semester grades, but don't expect it to differ much from the previously announced scales.

1) $C(7,5)+C(7,6)+C(7,6)=21+7+1=29$
2) Most people chose the first one. The proof should begin with something very close to this;

Assume $x \in \overline{A \cup B}$. We will show that $x \in \bar{A} \cap \bar{B}$. (Etc)
3a) There are many good answers, such as $R=\{(0,0),(1,1),(2,2),(0,1)\}$. It is probably easier to draw a digraph (with 3 loops!) or a matrix, but my list is OK too and easier to type.

3b) $R=\{(0,1)\}$ is one good example.
4) $F=\overline{x y} z+\overline{x y z}$.
5) FTFTF; the 4 th is OK because $4^{n}=2^{2 n} \leq 2^{2^{n}}=$ the number of functions.
6) Yes. Let $f\left(u_{1}\right)=v_{1}, f\left(u_{2}\right)=v_{3}$, etc.

Note that an isomorphism is a function from V_{1} to V_{2}, and you should use notation to match. I did accept abbreviations using arrows or columns, and gave lots of partial credit for bad notation, such as $u_{1}=v_{1}$. There is no reason to mention paths, or the number of edges, etc.
7) d, f, g, e, b, c, a
8) 18; compute $A^{6}=\left(A^{3}\right)^{2}$ and look in the upper right corner; 18. You don't have to
compute all 16 entries of A^{6}, of course. But -
There is a mistake in the Hint; every 3 should be a 4 . So, the correct answer is actually 32. I gave full credit for either 32 or 18 (or other answers derived from the flawed hint). No partial credit for other numbers without clear reasoning / work behind them.
9) $\bar{y}+\overline{x z}$
10) S is the set of non-negative even numbers (in the domain). For example, $f(2)=2 \in N$, but $f(3)=-6 \notin N$. So $2 \in S$ but not 3 .
11) Probably the simplest proof is to list the set, $Z=\{0,1,-1,2,-2, \ldots\}$ (with some explanation).

Bonus) There are two cases. Case A: Suppose everyone knows at least one other person, so the 'number known' ranges from 1 to 99 . These 99 possibilities are shared by 100 people. By the PHP, at least two have the same number known. Case B: Suppose someone there knows no one. Then nobody there knows 99 others. So, the 'number known' ranges from 0 to 98 . By reasoning similar to Case A, with PHP, two people share a number. Done.

Many people did Case A correctly and got 3 points, but nobody mentioned Case B. We went over this HW exercise in class, but it IS a tricky one.

