1) [10 pts$]$ Find two numbers $m \geq 2$ and $n \geq 3$ so that Q_{m} is isomorphic to C_{n}. Draw the graph(s).
2) [10 pts] Recall that $C A E$ is a permutation of $A C E$. How many permutations of the letters $A B C D E F G H$ contain the string $A B C$?
3) [15 pts] Suppose $A=\{a, b, c, d, e\}$ and R is an equivalence relation on A with only two equivalence classes. Suppose $[b]=\{b, d, e\}$ is one of them. a) Compute $|R|$.

3b) Is R^{2} an equivalence relation ? Explain briefly.
3c) Is \bar{R} an equivalence relation ? Explain briefly
4) [10 pts$]$ Let n be an integer such that $3 n+2$ is odd. Prove that n is odd. Mention the type of proof you are using (induction? contradiction ? etc).
5) [10 pts] a) Write out the \sum formula for $(x+y)^{12}$ from the Binomial theorem. Choose x and y carefully (experiment with $x, y=0$ or ± 1, etc) to calculate $\sum_{k=0}^{12}(-1)^{k} C(12, k)$.
b) Use part (a) to help calculate $\sum_{k=0}^{10}(-1)^{k} C(12, k)$.
6) [15 pts] True-False

The graph $K_{10,11}$ is bipartite.
The graph $K_{10,11}$ is planar.
We can form any postage of $n \geq 34$ cents from 7 cent and 9 cent stamps.
We can form any postage of $n \geq 8$ cents from 3 cent and 5 cent stamps.
89 is a term in the Fibonacci sequence.
7) [10 pts] Suppose a full 3-ary rooted tree T has 100 internal vertices. How many leaves does it have?
8) [10 pts] Simplify this expression using a K-map, $w \bar{x} y z+\bar{w} x \bar{y} \bar{z}+w \bar{x} \bar{y} z+w \bar{x} \bar{y} \bar{z}+w x \bar{y} \bar{z}+$ $\bar{w} \bar{x} \bar{y} \bar{z}+w \bar{x} y \bar{z}+\bar{w} x y z$.
9) $[10 \mathrm{pts}]$ Show that in a group of 10 people there are either 3 mutual enemies or 4 mutual friends. Hint: person A either has 6 friends or 4 enemies (why? how does this remark help? This was a HW problem, but see me if you don't understand it).

Bonus) [approx 5 pts] Choose ONE:
a) State and prove (in at least as much detail as done in class) Euler's Thm about
existence of Euler circuits in a multi-graph.
b) Simplify the Boolean expression in problem 8 using the Quine-McCluskey method instead of a K-map. Include all the usual tables, show all your work, and comment briefly on your reasoning.

Remarks and Answers: The results were low on problems 5 and 9, but OK on most others. The highest grade was 90 and the average was approx 62 . I do not need a separate scale for the final, but if so, would probably start the A's at approx 75 . This exam was designed for 75 minutes, though we went about 7 minutes over that.

1) Q_{2} is isomorphic to C_{4}. Both are squares (roughly speaking).
2) 6 ! See HW Ch 6.3.21, etc.

3a) 13. 3b) Yes, because $R^{2}=R$ in this case. 3c) No, not reflexive.
4) In my opinion, the simplest method is to prove the contrapositive. See page 83. [Assume n is even, so $n=2 k$. Then $3 n+2=2(3 k+1)$ is even, too. Done].

The contradiction method is very similar, but probably needs more explanation, such as a clear assumption at the start that $3 n+2$ is odd. See page 87 . Other methods might be possible, but less natural, like using a hammer to chop down a tree. I didn't give much credit for (unsuccessful) attempts to use induction or a trivial proof, etc, but one person was fairly successful using cases.

5a) $(x+y)^{12}=\sum_{k=0}^{12} C(12, k) x^{12-k} y^{k}$. Setting, $x=1$ and $y=-1$, the second part of 5 a is 0 . This is Cor 2 on page 417. Note that the author makes a tiny mistake by using the exponent $n-k$ on y instead of x, but this really doesn't matter since x and y are practically interchangeable.

5b) 11. This sum +2 more terms $=5 \mathrm{a}=0$. The last two terms are $-12+1$.
6) TFFTT. $K_{10,11}$ is not planar because it contains $K_{3,3}$ (if you didn't remember this, you might guess it is not planar, just because it has so many edges). You can't make 38 cents from 7 and 9 . This one requires some experimentation, but if you do it systematically, it doesn't take long.
7) 201. We learned that $n=|V|=m i+1=301$ and $l=n-i=301-100=201$ (or, you could use the shortcut $l=(m-1) i+1$ if you memorized that).

This question was not really about memorizing obscure formulas. Even if you forgot them, you might re-discover the patterns by drawing a small tree with 2 or 3 internal vertices. Of course, you DO need to know the vocabulary! And some formulas (see 5a) are worth memorizing.
8) $w \bar{x}+\bar{y} \bar{z}+\bar{w} x y z$. Many people omitted the second table (see page 839) but overall the results on this one were very good.
9) [partial answer] Suppose A has at least 6 friends. Apply Example 13 (done in class) to conclude these 6 contain 3 m. 's or $3 \mathrm{~m} . \mathrm{f}$'s. Explain why we are done either way. I leave the other case to you, that A has at least 4 enemies. Explain why at least one case occurs. The results on this one were poor; I expected more people to remember this one. It was HW 6.2.27, and is similar to Ex 13, but with a bit more casework.

Bo) See the text.

