Ch.1.25: Given $G, 2 \leq t \leq p-1, k$ such that if $H \subset G$ with $|V(H)|=t$ then $|E(H)|=k$. Prove that G is complete or trivial.

Plan: We can change H slightly by swapping out two vertices at a time, without changing the number of edges. This should give a contradiction unless G is one of the extreme cases above (but this does seem to take some work - if you see an easier approach please share!).

Proof: We can assume $0<k<C(t, 2)$ to get a contradiction. Choose any H as above, and vertices $w \in H, u \notin H$. First, suppose w is not adjacent to u. Let $\hat{H}=H$, except that it includes u but not w. We have not changed the number of vertices, so $|E(\hat{H})|=|E(H)|=k$. So, $|N(w) \cap H|=|N(u) \cap H|=$ some constant C. Secondly, similar reasoning shows $|N(w) \cap H|=C-1$ iff w is adjacent to u. Deduce that $w u \in E(G)$ for all $w \in A=\{w \in H:|N(w) \cap H|=C-1\}$ and all $u \notin H$ (or, write $u \in \bar{H}$, a slight abuse of notation). Since this is also true in \hat{H} (formed by swapping 2 vertices from A and \bar{H}), deduce that $x y \in E(G)$ whenever $x, y \in A \cup \bar{H}$. Likewise, $x y \notin E(G)$ whenever $x \in H-A$ and $y \in \bar{H}$ (or $y \in A$).

Similar comments hold when \hat{H} is formed from swapping $x \in H-A$ with $y \in \bar{H}$. Since x is now in \bar{H}, x must be adjacent to the other vertices in \bar{H} (and in A). But this contradicts the end of the previous paragraph.

I leave a little to you, for example, can \bar{H}, A or $H-A$ be empty?

