MAD 3305 - GRAPH THEORY

REVIEW FOR TEST #2

PROF HUDSON

SPRING 2014

KEY CONCEPTS AND MAIN DEFINITIONS:

Ch.3: Non-identical spanning trees, Cayley's formula, directed (rooted) trees, traversals of binary rooted trees, Prufer codes, the center of a graph or tree.

Ch 4: Networks, capacity of an edge, legal flow, value of a flow, source-separating set of vertices, cut associated with a source-separating set, capacity of a cut, augmenting paths.

Ch 5: Euler circuits, Euler trails, Chinese postman problem, minimum postman walk, Hamilton cycles, Hamilton paths, Ore-type graphs, the dodecahedron and the Petersen graph, the closure of G, traveling salesman problem, Hamilton-connected graphs,

Ch 6: Planar graphs, planar embeddings, maximal planar graphs, K₅, K_{3,3}, subdivisions (refinements), homeomorphisms, pieces (fragments), the DMP theory, polyhedral graphs, the five regular polyhedral.

+ [if covered on June2]: geometric dual, self-dual graphs, dual polyhedra,

MAIN ALGORITHMS:

- 1. Prufer's Coding/Decoding Algorithm
- 2. The Inorder (etc) Traversal Algorithms
- 3. Huffman's tree contstruction (pgs 94-96)
- 4. Ford-Fulkerson Algorithm (and variations in the HW)
- 5. Fleury's Algorithm for finding Euler circuits
- 6. Hierholzer's Algorithm for finding Euler circuits
- 7. The DMP Planarity Algorithm,

MAIN PROOFS - ones over about 4 sentences:

- 1. Cayley's formula (Prufer's proof)
- 2. The Max Flow Min Cut Thm
- 3. The Euler Circuit TFAE Thm
- 4. Ore's Thm
- 5. Euler's formula for planar graphs

MAIN THEOREMS not already listed above:

- 1. Huffman's Thm 3.6.1
- 2. The Matrix Tree Thm
- 3. G has an open Euler trail if and only if G has exactly two vertices of odd degree.
- 4. Every region of a maximal planar graph is bounded by 3 edges.
- 5. In any maximal planar graph with $p \ge 3$ vertices, we have q = 3p-6.

- 6. G is planar if an only if G has no subgraph which is homeomorphic to K_5 or $K_{3,3}$. (Kuratowski's Theorem)
- 7. The DMP Thm 6.2.2