1) [30 pt] Compute the limit. You may answer with ' $+\infty$ ' or ' $-\infty$ ' but not with 'd.n.e'. Show enough work or reasoning.
a) $\lim _{x \rightarrow-\infty} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=$
b) $\lim _{x \rightarrow+\infty} \frac{\sqrt{5 x^{2}-2}}{x+3}=$
c) $\lim _{y \rightarrow \pi / 2^{-}} \ln (\tan (y))=$
2) $[20 \mathrm{pt}]$ Short answer problems.
a) Solve for x, given that $\frac{1}{3-x}<2$.
b) Find a formula for the area A of a circular sector in terms of its internal angle θ and the radius r (we used it in the $\sin (x) / x$ proof).
3) (20pts) Answer True or False. You do not have to explain.
a) $\cot (x)$ is continuous on $[-\pi / 4, \pi / 4]$.
b) $\frac{\cos (x)}{\ln (x)}$ is continuous on $[\pi / 4, \pi]$.
c) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}}=1$.
d) $\forall \epsilon>2, \exists \delta>3, \delta<\epsilon$.
e) $\forall \epsilon>4, \exists \delta>3, \delta<\epsilon$.
f) $\forall \epsilon>0, \exists \delta>0$, such that if $|x-1|<\delta$ then $|2 x-2|<\epsilon$.
g) $\lim _{x \rightarrow a} f(x)$ exists if and only if $\lim _{x \rightarrow a^{+}} f(x)$ exists.
h) If $|x-2|<1$ then $|2 x-4|<3$.
i) If $|x-23|<2$ then $|x-22|<3$.
j) The graph of $x=\cos ^{2}(t), y=\sin ^{2}(t)$ is a straight line.
4) [15pt] Approximate the solution to $x^{3}+x^{2}-x+1=0$ within 0.1 , with some explanation of your reasoning. You can use the data below instead of a calculator (a little arithmetic and organization is left for you).

x	$x^{3}+x^{2}$
1	2
-1.6	-1.536
-1	0
-2	-4
-1.8	-2.592
-1.4	-0.784

5) [15pts] Choose ONE of the problems below to do. Remember to use enough words and sentences - not just formulas.
a) Show that $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=0$. (you may use the other main trig limit).
b) Show that $\lim _{x \rightarrow 3} 4 x-1=11$ using the definition of limit.

Bonus [5pts]: Use the definition of limit to prove that $\lim _{x \rightarrow 2} 1 / x=1 / 2$. This should be similar to the limit problem with x^{2} we did in class (though the algebra will be a little different). If you answer on the back, leave me a note here.

Remarks and Answers: The average was approx 50/100, which is of course very low. The worst results were on the PreCalc question (\#2) and the IVT problem (\#4). The new [unofficial] scale is:

$$
\begin{aligned}
& \text { A's }=70 \text { to } 100 \\
& \text { B's }=60 \text { to } 69 \\
& \text { C's }=50 \text { to } 59 \\
& \text { D's }=40 \text { to } 49 \\
& \text { F's }=00 \text { to } 39
\end{aligned}
$$

1a) -1 . Each part of problem 1 was worth 10 points. For 1a), I gave 10 points for the correct answer with correct work:

$$
\lim _{x \rightarrow-\infty} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \cdot \frac{e^{x}}{e^{x}}=\lim _{x \rightarrow-\infty} \frac{e^{2 x}+1}{e^{2 x}-1}=-1
$$

I gave about 8 points for getting -1 , using the method of 'dominant terms' (which usually works, but I advised against it, unless $f(x)$ is a rational function). If you ignored the minus sign in the $-\infty$, you probably got an answer of +1 , and maybe 5 points partial credit, depending on your method.

1b) $\sqrt{5}$ with grading similar to 1a). For full credit, you need to multiply by $1 / x$ on top and bottom (or some similar algebra).

1c) $+\infty$. This example is not hard to reason out, but it is harder to explain. I gave full credit for your reasoning if you included either
i) the graphs of both $\tan (x)$ and $\ln (x)$, or
ii) the formulas $\lim _{x \rightarrow \pi / 2^{-}} \tan (x)=+\infty$ and $\lim _{x \rightarrow \infty} \ln (x)=+\infty$.

2a) $x<5 / 2$ or $x>3$ (of course, you must include both of these for full credit). The answer can be abbreviated $(-\infty, 5 / 2) \cup(3, \infty)$. There are several valid methods for getting this answer. My favorite is to locate the endpoints (such as $x=5 / 2$) first. You can find them from
i) Set $|x-3|=1 / 2$ and get $x=5 / 2$ or $x=7 / 2$ (later, we see that this second value does not actually come into the answer, but it might do so in similar examples).
ii) Set $3-x=0$ to get $x=3$.

Now, you can rely on a rough graph of $1 /(3-x)$, or you can test each possible interval [such as $5 / 2<x<3$] by plugging in numbers [such as 2.6].

2b) $A=\theta r^{2} / 2$ (explained in class).
3) FFTFT TFTTT I went over these after the exam. Most have simple explanations - see me if needed.
4) Several people didn't understand the question. The solution is the value of x that makes the equation true. You probably can't find it exactly, because this is a cubic polynomial, so you are asked to find a value close to the correct one. The method (based on the IVT - see Ch 2.5) is to plug in lots of x 's until you can find two nearby ones that give different signs.
5) See the text or lectures notes. For a) use the conjugate.

Bonus: See me if you want help with this relatively hard problem. You can use $\delta=$ Min $[1, \epsilon / 1000]$ like the example I did in class, but the algebra is a little different. See the key to my PM exam for a similar proof.

