1) [30 points] Compute each limit:
a) $\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}-8}{x-2}}=$
b) $\lim _{x \rightarrow+\infty} \tan ^{-1}(x)=$
c) $\lim _{x \rightarrow+\infty} \sqrt{x^{2}-1}-x=$
2) $[20 \mathrm{pt}]$ Short answer problems:
a) Find all values of θ (in radians) that satisfy the equation $\cos (\theta)=\frac{-1}{\sqrt{2}}$
b) Solve $x^{2}-4 x+3<0$.
3) (20pts) Answer True or False. You do not have to explain.
a) $\tan (\pi / 2+x)$ is continuous at every point in the interval $(0, \pi)$.
b) If $\lim _{x \rightarrow 2} f(x)$ exists, then $\lim _{x \rightarrow 2^{+}} f(x)$ exists.
c) If x is a number so that $|x-2|<1$, then $|x-4|<5$.
d) $\forall \epsilon>0, \exists \delta>0, \delta+\epsilon<.001$.
e) If $f(1)=1$ and $f(3)=3$, and f is continuous, then $f(x)=2$ for some x in $(1,3)$.
f) For $f(x)=x^{2}+1$, the slope of every secant line is positive.
g) The domain of $f+g$ is the same as the domain of $f g$.
h) The derivative of $\tan ^{-1}(x)$ at $x=1$ is positive.
i) If $f(x)$ is continuous, then $g(x)=f(x) /\left(1+x^{2}\right)$ is also continuous.
j) $f(x)=\sin (x) / x$ has a removable discontinuity at $x=0$.
4) (10pts) Find the equation of the tangent line to $f(x)=x^{2}$ at $(-1,1)$.
5) (5pts) Eliminate the parameter. $x=\cos ^{2}(t)$ and $y=\sin ^{2}(t)$
6) [15 pts] Choose ONE of the problems below to do. Remember to use enough words and sentences - not just formulas.
a) Prove that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
b) Show that every polynomial of odd degree must have a root.
c) [5pts bonus, if correct] Show that $\lim _{x \rightarrow 3} x^{2}=9$ using the definition of limit.

Remarks and Answers: The average was approx 55/100, which is fairly low. The worst results were on the limits on page 1, and the proof (\#6). The new [unofficial] scale is:

$$
\begin{aligned}
& \text { A's }=75 \text { to } 100 \\
& \text { B's }=65 \text { to } 74 \\
& \text { C's }=55 \text { to } 64 \\
& \text { D's }=45 \text { to } 54 \\
& \text { F's }=00 \text { to } 44
\end{aligned}
$$

1a) $2 \sqrt{2}$, or you can leave it as $\sqrt{8}$. Each part of problem 1 was worth 10 points. For full credit, your method had to be fairly clear, and valid.

1b) $\pi / 2$. I accepted a graph as a valid method, since that's how we did this one in class.
1c) 0 . Use the conjugate, as usual. If I have time, I will post a graph of $y=\sqrt{x^{2}-1}$ and of $y=x$ on the exam page. It shows that $y=\sqrt{x^{2}-1}$ has $y=x$ as an oblique asymptote (which is consistent with the answer to this problem).

2a) Either $\theta=3 \pi / 4 \pm 2 \pi n$ or $\theta=5 \pi / 4 \pm 2 \pi n$, where $n=0,1,2 \ldots$..
2b) $1<x<3$. Factor the polynomial and then decide which interval(s) belong in the answer [this is precalc, but see the similar problem from my AM exam for more practice, and few more comments on the method].
3) TTTFT FTTTT. Most of these have simple explanations - see me if any are not clear.
4) $y-1=-2(x+1)$, or simplify that to $y=-2 x-1$. First, compute $m_{\tan }=$ $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=-2$, and plug that into the standard algebra formula for a line.
5) $x+y=1$. I made this into a True-False question on the AM exam.
6) See the text or lectures notes. For b) show that the poly has both positive and negative y values using limits at $\pm \infty$ and then quote the IVT. A student asked about c), so I am giving a fairly detailed proof here (also done in class):

Proof that $\lim _{x \rightarrow 3} x^{2}=9$. We must show that $\forall \epsilon>0, \exists \delta>0$ such that if $0<|x-3|<\delta$, then $\left|x^{2}-9\right|<\epsilon$.

Let $\epsilon>0$ be some given number. Set $\delta=\operatorname{Min}[1, \epsilon / 1000]$. [I went through the algebra behind this choice in class. Here, I will justify the choice, instead of showing that algebra again, but these two styles are almost the same thing anyway]. Now, we can assume that $|x-3|<\delta$. Since $\delta \leq 1$ AND $\delta \leq \epsilon / 1000$, we can draw TWO conclusions:
a) That $|x-3|<1$ and
b) That $|x-3|<\epsilon / 1000$

From a) we get $|x+3|<7$ [Please check the algebra for practice]. Combining this with b) we get

$$
\left|x^{2}-9\right|=|x-3||x+3|<(7 \epsilon / 1000)<\epsilon
$$

If you compare this with your lecture notes, you'll see that the steps there are very similar, but almost in reverse order - so that the formula $\delta=\operatorname{Min}[1, \epsilon / 1000]$ appears at the end. That is the style favored in our textbook (but I think it is harder to explain properly or to read). Of course, there are other possible proofs, involving other choices for δ.

