1) $[20 \mathrm{pts}]$ Ch 4.1-3, Compute the derivative, y^{\prime}
$y=\log _{2}\left(3 x^{4}\right)$
Use the f^{-1} theorem to compute y^{\prime} when $y=\sin -1(x)$, and simplify.
2) [10 pts] Find the dimensions of the cylinder with maximal volume that can be inscribed in a cone with radius 6 and height 10. You may need to use similar triangles at some point (or maybe the $y=m x+b$ formula instead).
3) [10pts] Find the relative extrema of $f(x)=x^{3}(x+1)^{2}$ and classify (as max $/ \mathrm{min}$).
4) [10 pts] Give an example of each. For maximal credit, give formulas (or, pictures are OK for partial credit).
a) A function with an absolute max which is not a relative max.
b) A function with a critical point which is not a stationary point.
5) [20 pts] Compute the limits using L'Hopital's Rule.
a) $\lim _{x \rightarrow \pi} \frac{\sin (x)}{x-\pi}=$
b) $\lim _{x \rightarrow \infty}(1+3 / x)^{x}=$
6) [20 pts] Answer True or False. You do not have to explain. Do not make unstated assumptions (that f is positive, continuous, etc).

If f is continuous on $[2,3]$ then it must have an absolute minimum on $[2,3]$.
Since $\ln (x)$ and $\ln (\pi x)$ have the same derivative, they differ by a constant.
If $f(0)=f(10)$ then f must have a stationary point.
If f is differentiable on the interval (a, b) then f has a maximum value on (a, b).
If f is increasing on (a, b) then $f^{\prime}(x)>0$ there.
7) [10 pts] Choose ONE of the problems below to do. Include enough comments and/or justifications.
a) Prove that if $f^{\prime}(x)<0$ on (a, b) then f is decreasing there. Use the MVT.
b) State and prove the Mean Value Theorem.

Remarks and Answers: The average was about 45 out of 100. I am still deciding how to scale this, or whether to allow a second chance on this material.

1a) Simplify to $y=4 \ln (x) / \ln (2)+C$ and then get $y^{\prime}=4 /(x \ln (2))$
1b) $y^{\prime}=\left(1-x^{2}\right)^{-1 / 2}$ (see text or lecture for the method).
2) Most people drew a decent picture, but many did not bother to label any variables (then the rest was usually confused). Label the cylinder with r and h and use $V=\pi r^{2} h$. Get $h=10-5 r / 3$ (from similar triangles or from $y=m x+b$). The rest is fairly routine; get $r=4$ and $h=10 / 3$.
3) It is probably easier to use the Product Rule than to multiply out, though either method is OK: $f^{\prime}(x)=3 x^{2}(x+1)^{2}+2 x^{3}(x+1)=x^{2}(x+1)(5 x+3)$ which gives $0,-1$ and $-3 / 5$. A number line (1st DT) shows -1 is a rel max, $-3 / 5$ is a rel min, and 0 is neither.

4a) $y=x$ on $[0,1]$. Giving examples can be hard, but we went over these two days before the exam.

4b) $y=|x|$
5a) -1
5b) e^{3}
6) FTTFF
7) See the text or lectures.

