1) (25 pts) Compute and simplify;
$\int e^{x^{2}} x d x=$
$\int \frac{2}{1+x^{2}} d x=$
$\int \sin ^{2}(t) d t=$
$\int \sec ^{2}(t) d t=$
$\int \ln \left(e^{4 t}\right) d t=$
2) (15 pts) Compute;
$\frac{d}{d x} x \sin (3 x)$
$\frac{d}{d x} \cot (x)$
Find $d y / d x$, given that $x^{2}+y^{2}=40$
3) (10 pts) Find the slope of the tangent line to the parametric curve, $x=\cos (t), y=$ $3 \sin (t)$ at the point where $t=\pi / 3$. For maximum credit, use the chain rule as done in class.
4) (10 pts) Suppose a baseball player is moving at $25 \mathrm{ft} / \mathrm{sec}$ from 2 nd base towards 3 rd , when he is 20 ft away from 3rd. How fast is his distance from home plate changing at that instant ? Notes: the bases form a 90 ft square, and you can ask me for a picture. You do not have to simplify.
5) (10 pts) CHOOSE ONE;
A) State and prove Rolle's Theorem.
B) State the definition of limit, and use it to prove that $\lim _{x \rightarrow 5} 4 x+3=23$.
C) If $f^{\prime}(x)>0$ on (a, b) then f is increasing on (a, b).
6) (10 pts) Answer TRUE or FALSE:

If $f^{\prime}(x)>g^{\prime}(x)$ on $(1,4)$, then $f(3)-f(2)>g(3)-g(2)$.
If f is increasing on (a, b) then $f^{\prime}(x)>0$ there.
A continuous function can have two different horizontal asymptotes.
The sum of any two continuous functions defined on $(-\infty,+\infty)$ is differentiable.
A continuous function defined on $[-3,3]$ must have a minimum value.
7) (5pts) Let $f(x)=(x-3) e^{x}$. Find and the classify the (only) critical point, as a relative min, a relative max, or neither, using the First Derivative Test.
8) (5 pts) Solve the initial value problem; $y^{\prime}(x)=(x+1)^{3}$ and $y(0)=4$.
9) [10 pts$]$ Suppose a particle has position $s(t)=t^{3}-6 t^{2}+4$ and acceleration $a(t)=6 t-12$ for $t \geq 0$. Find a formula for the velocity. When is the particle speeding up? slowing down? Explain briefly.

Remarks and Answers: Most of the papers were very good, with an average of about $75 / 100$. The results were a bit low, but still over 50%, on Problems 5 and 6 (the proof and TF). I have not set a special scale for the final.

This brings the semester average up to about 67%, so I expect to use the original scale on the syllabus to assign letter grades (approx). I have not yet added in the HW and EC, but don't expect those to change the scale.

1a) $e^{x^{2}} / 2+C$
1b) $2 \tan ^{-1}(x)+C$
1c) $t / 2-\sin (2 t) / 4+C$
1d) $\tan (x)+C$
1e) $2 t^{2}+C$
2a) $\sin (3 x)+3 x \cos (3 x)$
$2 \mathrm{~b})-\csc ^{2}(x)$
2c) $-x / y$
3) $-\sqrt{3}$
4) $-500 / \sqrt{8500}$
5) See text or lectures. Most people chose A (Rolle's).
6) TFTFT
7) $x=2$ is a rel min.
8) $(x+1)^{4} / 4+15 / 4$
9) Slowing down when $2 \leq t \leq 4$, and otherwise speeding up.

