NAME
Show all your work and reasoning for maximum credit. Do not use a calculator, book, or any personal paper. You may ask about any ambiguous questions or for extra paper. Hand in any extra paper you use along with your exam.

1) $[15 \mathrm{pts}]$ For $f(x)=x^{4}-6 x^{2}+5$
a) Find the intervals on which f is increasing; on which f is decreasing.
b) Find the critical points and determine whether a relative minimum, relative maximum or neither occurs there.
c) Find the intervals on which f is concave up; on which f is concave down.
d) Find the coordinates of all inflection points.
e) Graph the function.
2) [8 pts] Find $\frac{d y}{d x}$ where y is implicitly defined as a function of x by $x^{3} y^{2}-5 x^{2} y+x=1$.
3) $[10 \mathrm{pts}]$ A closed rectangular container with a square base is to have a volume of 2250 cubic inches. The material for the top and the bottom of the container will cost $\$ 2$ per square inch, and the material for the sides will cost $\$ 3$ per square inch. Find the dimensions of the container of least cost.
4) $[8 \mathrm{pts}]$ Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{8 x^{2}}$
5) $[5 \mathrm{pts}]$ Compute $\sum_{k=7}^{100} k$.
6) $[8 \mathrm{pts}]$ Sketch the curve by eliminating the parameter
$x=\sqrt{t}$
$y=2 t+3$
7) [20 pts] Compute each, using any valid method. Be careful to answer with a number, a function, or a set of functions, as appropriate:

$$
\begin{aligned}
& \int \sin ^{2}(x) d x \\
& \int \tan (x) d x \\
& \int \frac{1+t^{3}}{t^{2}} d t \\
& \int_{1}^{3} 2 x d x
\end{aligned}
$$

8) $[8 \mathrm{pts}]$ Use a local linear approximation to estimate $(1.97)^{3}$.
9) [8 pts$]$ Find a value of the constant k that makes this function continuous everywhere

$$
f(x)= \begin{cases}k x^{2} & x \leq 2 \\ 2 x+k & x>2\end{cases}
$$

10) [10 pts] Choose ONE: provide ample explanation, as usual.
a) State and prove the theorem about $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.
b) Prove $\lim _{x \rightarrow 3} 2 x=6$ using the ϵ method.
c) Prove that $\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$, using the $\left(f^{-1}\right)^{\prime}(x)$ formula.

Bonus: [5 points] Compute the exact area under $y=x^{2}$ from $x=2$ to $x=4$ using integration (rectangles, summation formulas, a limit).

Remarks and Answers: The average was about 54 out of 100 with high scores of 81 and 78 . The worst scores were on problem $3(17 \%), 5(35 \%)$ and $10(40 \%)$, with problem 7 not much better. I will treat problem 5 more-or-less as extra credit since it comes from Ch. 5.4. I have not yet computed an average or set a scale for the semester grades.

1) [brief answer only] Increasing on $(-\sqrt{3}, 0)$ and on $(\sqrt{3}, \infty)$. The endpoints are the critical points, and could be included. It is concave down on $(-1,1)$ and c.up elsewhere. The graph is shaped like a curvy W.
2) $\frac{d y}{d x}=\frac{10 x y-3 x^{2} y^{2}-1}{2 x^{3} y-5 x^{2}}$
3) Draw a picture and set $2250=h x^{2}$, so $h=2250 x^{-2}$. You can include $V=l w h$ if it helps you, and you can use other letters for x (side-length of the base) and h (height). The cost is $C(x)=4 x^{2}+12 x h=4 x^{2}+12 \cdot 2250 \cdot x^{-1}, 0 \leq x<\infty$. Ch 4.4 methods ($\mathrm{C}^{\prime}(\mathrm{x})=0$, etc) give $x=15, h=10$.

By far the most common problem was setting this up, not getting $C(x)=4 x^{2}+12 x h$, for example. The cost is the sum of the costs of the 6 faces; the bottom face (the base) will cost $\$ 2$ per square inch, times x^{2} square inches, so $2 x^{2}$ (etc). With practice, this should not be very hard.
4) $9 / 16$ from LHR twice.
5) If the sum started at $k=1$ the answer would be 5050 (the Little Gauss example). Since it starts at 7 , some numbers $(1+2+3+4+5+6=21)$ have been left out. So, 5050-21=5029.
6) $y=2 x^{2}+3$ with $x \geq 0$, half a parabola.
7) $x / 2-\sin (2 x) / 4+C$, the main idea is $\sin ^{2}(x)=(1-\cos (2 x)) / 2$ (done in class).
$\ln |\sec (x)|+C$, the main idea is $u=\cos (x)$ (done in class)
$-1 / t+t^{2} / 2+C$, the main idea is $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$.
$\left.x^{2}\right|_{1} ^{3}=8$
8) $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) d x=8+12 \cdot(-0.03)=7.64$.
9) $k=4 / 3$ Set $k x^{2}=2 x+k$ with $x=2$.
10) See the text or lecture notes; the common problem was failure to (re)study these proofs.

Bonus) $56 / 3$ after a long calculation (see Ch.5.4). No credit for using $\left.\frac{x^{3}}{3}\right|_{2} ^{4}$.

