1) (10 pts) Compute y^{\prime};
a) $y=(2 x)^{x}$
b) $y=\log _{3}(2 x+1)$
2) (10 pts) Solve this Initial Value Problem: $y^{\prime}(t)=e^{t}+t$ and $y(0)=2$.
3) (25 pts) Compute and simplify;
$\int e^{2 x} d x=$
$\int \frac{t}{1+16 t^{2}} d t=$
$\int \frac{1-2 t^{3}}{t^{3}} d t=$
$\int \cos ^{2}(x) d x=$
$\int \tan ^{2}(x) d x=$
4a) (10 pts) Find the slope of the tangent line to the curve, $x=\sqrt{t}, y=2 t+1$ at $t=1$. For maximum credit, use the chain rule as done in class.

4b) (5 pts) For the same curve as above, find $d^{2} y / d x^{2}$ when $t=1$.
5) (10 pts) Sketch a graph of $y=\frac{x^{2}-1}{x^{3}}$. Find all critical points, inflection points and asymptotes [and label them clearly]. You may use:

$$
\begin{aligned}
& y^{\prime}=\frac{3-x^{2}}{x^{4}} \\
& y^{\prime \prime}=\frac{2\left(x^{2}-6\right)}{x^{5}} \\
& \sqrt{3} \approx 1.8 \\
& \sqrt{6} \approx 2.4 \\
& 1.8^{-3} \approx 0.18 \\
& 2.4^{-3} \approx 0.07
\end{aligned}
$$

6) (20 pts) Answer TRUE or FALSE:
$f(x)=\ln |x|$ is an increasing function.
A rational function is continuous except where the denominator is zero.
The function $\cot (x)$ is continuous on the interval $(-\pi / 4, \pi / 4)$.
If f is a polynomial, then it has exactly one antiderivative whose graph contains the origin.

If $f(2)=f(3)$ then there is a point $c \in(2,3)$ where $f^{\prime}(c)=0$.
If F is an antiderivative of an antiderivative of f, then $F^{\prime \prime}(x)=f(x)$.
$f(x)=x^{2 / 3}$ is a differentiable function.
$f(x)=\left(2 x^{2}+1\right) / x$ has an oblique asymptote of $y=2 x$.
The graph of $r=\sin (\theta)$ is a circle.
Both ∞^{0} and 0^{∞} are indeterminate forms.
7) [10pts] Suppose a particle has position $s(t)=t^{3} / 3-2 t^{2}+5$ [so, $v(t)=$ $t^{2}-4 t$ and $\left.a(t)=2 t-4\right]$ for $t \geq 0$. When is the particle speeding up? slowing down? Explain briefly.

Remarks: The average was about $65 / 100$ based on 17 scores over 40 . The high score was 96 . The only unusual statistics were an 83% average on 7), and a 56% average on the TF. I thought a few parts of problem 3 were relatively difficult (for Calc I) and was happy to see good results there. You can use the standard scale (on the syllabus) for this exam, or maybe lower it a few points in your favor.

1a) $(2 x)^{x}[\ln |2 x|+1]$
1b) $2 /(\ln (3)(2 x+1))$
2) $y(t)=e^{t}+t^{2} / 2+1$

3a) $e^{2 x} / 2+C$
3b) $\ln \left(1+16 t^{2}\right) / 32+C$
3c) $-t^{-2} / 2-2 t+C$
3d) $x / 2+\sin (2 x) / 4+C$
3e) $\tan (x)-x+C$
4) 4 and 4
5) This is example 2 on page 292 (with some of the work already done).
6) FTFTF TFTTF
7) Speeding up on $(0,2)$ and $(4,+\infty)$

