1) (20 pts) Compute and simplify;

$$
\begin{aligned}
& \int e^{2 x} d x= \\
& \int \sec (x)(\sec (x)+\tan (x)) d x= \\
& \int \frac{1}{1+16 t^{2}} d t= \\
& \int \frac{t}{1+16 t^{2}} d t=
\end{aligned}
$$

2) (10 pts) Suppose a particle has velocity $v(t)=3 t+2$ at time t. Suppose it begins at position $s(0)=5$. Find its position after 3 seconds.
3) (15 pts) Compute y^{\prime};
a) $y=(2 x)^{x}$
b) $y=\log _{3}(2 x)$
c) $y=\sin ^{-1}(x+1)$
4) (10 pts) Find the slope of the tangent line to the curve, $x=\sec (t)$, $y=\tan (t)$ at the point where $t=\pi / 3$. For maximum credit, use the chain rule as done in class.
5) (10 pts) Assume oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of $2 \mathrm{ft} / \mathrm{s}$. How fast is the area of the spill increasing when the radius of the spill is 60 ft ?
6) (10 pts) CHOOSE ONE (you may continue on the back or on extra paper);
A) State and prove Rolle's Theorem.
B) State and prove the Product Rule.
7) (10 pts) Answer TRUE or FALSE:

$$
f(x)=\ln |x| \text { is an increasing function. }
$$

A continuous function defined on $(-\infty,+\infty)$ must have a minimum value.

A rational function is continuous except where the denominator is zero.
If f is differentiable on the open interval (a, b) then it is continuous on the closed interval $[a, b]$.

The function $\cot (x)$ is continuous on the interval $(-\pi / 4, \pi / 4)$.
8) [5pts] Compute $\lim _{x \rightarrow+\infty}(1+2 / x)^{2 x}=$ (and show all work, as always)
9) [10pts] Suppose a particle has position $s(t)=t^{3} / 3-2 t^{2}+5[\mathrm{so}, v(t)=$ $t^{2}-4 t$ and $\left.a(t)=2 t-4\right]$ for $t \geq 0$. When is the particle speeding up? slowing down? Explain briefly.

Remarks and Answers: The average was about $65 / 100$, based on 7 grades above 40. The scores were slightly below 50% on problem 9 , and only about 57% on the TF, but none of the problems were disasters. You can use the scale on the syllabus for this exam. I have not set a scale for the semester yet.

1a) $e^{2 x} / 2+C$
1b) $\tan (x)+\sec (x)+C$
1c) $\tan ^{-1}(4 x) / 4+C$
1d) $\ln \left(1+16 t^{2}\right) / 32+C$
2) $27 / 2+6+5$

3a) $(2 x) x[\ln (2 x)+1]$
3b) $1 /(x \ln (3))$
3c) $\left[1-(x+1)^{2}\right]^{-1 / 2}$
4) $\csc (\pi / 3)=2 / \sqrt{3}$
5) 240π
6) see text
7) FFTFF
8) e^{4}
9) It speeds up when $t \in(0,2)$ or $t \in(4,+\infty)$.

