Problems 2-5 are worth 15 points each.

1) [10pts each] In each part, solve for x. In some parts, the answer might be a single number. In others, it might be several numbers, or an interval, etc.
a) $\frac{1}{x-3}+\frac{1}{x+3}=\frac{4}{x^{2}-9}$
b) $(x-5)(x+5) /(x-10)<0$
c) $\log _{3}\left(3^{x}\right)=x^{1 / 2}$
d) $\sin (x)=\sin (2 x)$ with $\pi \leq x \leq 2 \pi$.
2) Solve for both x and y :

$$
\begin{gathered}
x-2 y=2 \\
-2 x+8 y=-2
\end{gathered}
$$

3) Simplify $\sin \left(\cos ^{-1}(x)\right)$ to an algebraic expression.
4) Which of these are 1-1 functions of x ? Circle the ones that are.

$$
|x| \quad x^{3} \quad \sin (x) \quad \tan ^{-1}(x) \quad e^{x}
$$

5) Suppose that x is a number so that $|x-3|<2$. Explain in detail why $|x-4|<3$ must also be true. Your answer can be mostly formulas, but it should include some words, too.

Remarks and Answers: The average was about 45/100. If you scored below 40/100, you probably do not have the background you need to pass Calculus I, and you must see me about that. If you scored in the 40-50 range, your prospects are not too good, and you may also want to see me about remedial work. Assuming that most low scorers will drop, the average will probably rise to about $60 / 100$. The approx scale is:

A's 75-100, B's 65-74, C's 55-64, D's 45-54, F's 00-44.
The questions were mostly taken from Ch 1 exercises, from standard PreCalc exams, or from my Spring 2006 pretest (with some minor changes). The average scores were high on 1 a and 2 ; low on $1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~d}$.

1a) $\frac{1}{x-3}+\frac{1}{x+3}=\frac{(x+3)+(x-3)}{x^{2}-9}$, so $2 x=4$. So, $x=2$.
b) Let $f(x)=(x-5)(x+5) /(x-10)$. This function changes sign at $-5,5$ and 10 . For example, $f(4.99)>0$ but $f(5.01)<0$. You don't need a calculator to see that - just look at the signs of the three factors separately. After checking another point or two (such as $f(-6)<0$ and $f(11)>0$), we can be sure the solution set is $(-\infty,-5) \cup(5,10)$.

I usually like to organize this kind of work on a number line, but it's hard to type.
c) $\log _{3}\left(3^{x}\right)=x$, so $x=x^{1 / 2}$. We can square both sides to get $x^{2}=x$ and $x^{2}-x=0$ and $x(x-1)=0$. So, $x=0$ or $x=1$.

Note: Squaring both sides can "create new solutions", so we really should check both 0 and 1 at the end. But they both satisfy $x=x^{1 / 2}$ and are both OK.

Several people answered $x=1$ (without doing much work, and without finding $x=0$). I had to assume that was guesswork, and didn't give a lot of partial credit for it.
d) $\sin (x)=\sin (2 x)$ with $\pi \leq x \leq 2 \pi$. Since $\sin (2 x)=2 \sin (x) \cos (x)$, the equation soon becomes $\sin (x)[1-2 \cos (x)]=0$. So, either $\sin (x)=0$ or $1-2 \cos (x)=0$. We know $\cos (\pi / 3)=1 / 2$, but $\pi / 3$ is not in the given interval. The answer is: $x=\pi$ or 2π or $2 \pi-\pi / 3=5 \pi / 3$.
2) $x=3$ and $y=1 / 2$. Multiply the top eqn by 2 and add that to the second one, etc. [It is OK to solve one eqn for x, and plug the result into the second eqn, but that method is probably more work, especially for bigger versions of this problem].
3) $\sin \left(\cos ^{-1}(x)\right)=\sqrt{1-x^{2}}$.

Set $\cos ^{-1}(x)=\theta$, so $\cos (\theta)=x$. To find $\sin (\theta)$, I'd draw a triangle as done in class, but it is also OK to start from $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$, and get $\sin (\theta)= \pm \sqrt{1-\cos ^{2}(\theta)}=$ $\pm \sqrt{1-x^{2}}$. Then explain that the \pm is + , because θ is in the range of $\cos ^{-1}(x)$, which is $[0, \pi]$. But I didn't insist on so much explanation, with this method or the triangle one.
4) These are 1-1: $x^{3}, \tan ^{-1}(x)$ and e^{x}. Each one has a well-known inverse function, and each passes the horizontal line test. The other two fail it. You should already have a pretty good mental image of the graphs of these 5, but you could plot some points if needed.
5) This is very similar to a problem on the pre-test in Spring 2006. So, please review that answer key. Another quick approach is to calculate and compare the two solution sets (and explain);

$$
(1,5) \subset(1,7)
$$

But I wanted to make you think and write (rather than just calculate), so I'd prefer the method on the 2006 key.

