1) [5 pts$]$ Find the volume of the solid generated when the region between $x=4 y-y^{2}$ and $x=0$ is revolved around the y-axis. You can express your answer as a definite integral. You do not have to compute it.
2) [10 pts] Sketch the curve where $y=\sin ^{-1}(x)$ for $0 \leq x \leq 1$ and find the area under it. Remark: this is also the region where $\sin (y) \leq x \leq 1$ and $0 \leq y \leq \pi / 2$.
3) [10 pts] Find the volume of the solid generated when the region between the graphs of $f(x)=1+x$ and $g(x)=2+x$ over the interval [0,2] is revolved around the x-axis. State which method you are using. A graph or two is suggested.
4) $[10 \mathrm{pts}]$ Find the arc length of the curve $y=3 x^{3 / 2}-1$ over the interval $[0,1]$.
5) [10 pts$]$ A conical water tank is 10 ft tall with a radius of 5 ft at the top. It contains water to a depth of 6 ft with density 62 lbs per cubic ft . How much work is required to pump the water over the top of the tank ? You can express your answer as a definite integral. You do not have to compute it.
6) [10 pts] Choose ONE. Explain the usual formula for one of these, with small extra credit for the second one. Draw a picture and label any relevant functions and/or intervals. Assume revolution around the x-axis. For full credit include a limit, a discussion of the 'pieces', a Riemann sum and, of course, words.
a) Volume with the Shell method.
b) Area of a surface of revolution.
7) $[6 \mathrm{pts}]$ Compute $\int e^{x} \cos (x) d x$.
8) $[6 \mathrm{pts}]$ Compute $\int \sin ^{3}(x) \cos ^{4}(x) d x$
9) $[6 \mathrm{pts}]$ Compute $\int_{0}^{\pi / 4} \sqrt{9-x^{2}} d x$
10) $[6 \mathrm{pts}]$ Compute $\int \ln (x+1) d x$
11) $[6 \mathrm{pts}]$ Compute $\int \frac{d x}{x^{2}+4 x+8}$
12) $[15 \mathrm{pts}]$ Answer True or False to each part. You do not have to explain.

If a cylinder S has height 2 and each horizontal cross section has area 5 , then the volume of S is 10 .

If a region R in quadrant 1 with area greater than 1 revolves around the x-axis, the resulting solid of revolution has volume greater than π.

One of the trig identities used in Ch. 7 was $\sin (a) \sin (b)=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$.
If a region revolves around the y-axis, the Shell Method uses a $d x$ integral.
The amount of work required to send a rocket infinitely (indefinitely) far from earth is infinite.

Bonus: (5 points, maybe hard): Fluid enters a hemispherical bowl with a radius of 10 ft at a rate of $1 / 2$ cubic ft per minute. How fast is the fluid rising when the depth is 5 ft ?

Remarks and Answers: The average was 61, with highs of 90 and 84, which is fairly normal but a bit low. The scores averaged over 80% on problems $1,5,7$ and 8 but under 50% on problems 2, 6, 10 and 11 . Here is a scale for the exam:

$$
\begin{aligned}
& \text { A's } 70 \text { to } 100 \\
& \text { B's } 60 \text { to } 69 \\
& \text { C's } 50 \text { to } 59 \\
& \text { D's } 40 \text { to } 49
\end{aligned}
$$

To estimate your semester grade from your two exams scores, average them and put that on the scale below. I will include HW at the end, but it is hard to factor that in yet. See the syllabus about \pm grades.

$$
\begin{aligned}
& \text { A's } 69 \text { to } 100 \\
& \text { B's } 59 \text { to } 67 \\
& \text { C's } 49 \text { to } 57 \\
& \text { D's } 39 \text { to } 47
\end{aligned}
$$

There were two versions of the exam, which differed slightly only on problems 8 and 11. The answers below match the questions above, but include remarks on the other version.

1) $V=\int_{0}^{4} \pi\left(4 y-y^{2}\right)^{2} d y$ and stop.
2) The simplest solution (based on the remark and/or the picture) is to treat this as area between two curves, and get $\int_{0}^{\pi / 2} 1-\sin (y) d y=\pi / 2-1$. The direct approach, $A=\int_{0}^{1} \sin ^{-1}(x) d x$, is harder to calculate, but you can go on with IBP.
3) 10π
4) $L=\int_{0}^{1} \sqrt{1+\left(9 x^{1 / 2} / 2\right)^{2}} d x=\cdots=(85 \sqrt{85}-8) / 243$
5) $W=62 \pi \int_{0}^{6}(y / 2)^{2}(10-y) d y$.
6) "Explain" means "justify" (not quite "prove") as done in class. See the text or lecture notes. Most people chose (a), but many did not know the Shell Method. A good
explanation should include a picture of a single shell with a fairly detailed discussion of its volume.
7) Using "the trick" as explained in class, $e^{x}(\sin (x)+\cos (x)) / 2+C$.
8) Use $u=\cos (x)$. For this version of the exam, get $\cos ^{7}(x) / 7-\cos ^{5}(x) / 5+C$. The other version starts with $\cos ^{6}$ instead of $\cos ^{4}$ and then the answer is $\cos ^{9}(x) / 9-\cos ^{7}(x) / 7+C$.
9) Use $x=3 \sin (\theta)$ and $d x=3 \cos (\theta) d \theta$ to get to $9 \int \cos ^{2} \theta d \theta=\frac{9}{2} \int(1+\cos 2 \theta) d \theta$, etc. I realized a bit late that this doesn't simplify very nicely with $b=\pi / 4$, so I gave full credit for getting this far.
10) $(x+1) \ln (x+1)-x+C$. There are several ways to start, but I'd set $u=x+1$ (this kind of subn is almost never a bad idea) and get $\int \ln (u) d u=u \ln (u)-u+C$, either from memory, or from IBP.

You can skip the u step and use IBP from the start, but that may get tricky (you may need to integrate $x /(x+1)$ which is a fairly easy improper Ch.7.5 problem). Or, if you cleverly use $\int 1 d x=x+1$, instead of x, the IBP is not too hard. Remember that integration may require some trial and error, so if you hit a dead end, try another approach.
11) Complete the square and then use $x+2=2 \tan \theta$, getting $\int\left((x+2)^{2}+4\right)^{-1} d x=$ $\int \frac{2}{4} d \theta=\frac{\theta}{2}+C=\frac{\tan ^{-1}\left(\frac{x+2}{2}\right)}{2}+C$.

If you had the other version of the exam, use $x^{2}+6 x+18=(x+3)^{2}+9$ with a very similar answer (change the 2 s to 3 s).
12) TFFTF
B) $1 / 150 \pi$. See the bonus for Exam 2, Summer 2016.

