Problems 1-6 are 7pts each. Other unlabeled problems are 10 points each. You can use the formulas below for any problems on this exam, as needed.
a) $\int \frac{d x}{1-\cos a x}=-\frac{1}{a} \cot \left(\frac{a x}{2}\right)+C$
b) $\int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x$
c) $\int \frac{x^{2}}{\sqrt{a^{2}-x^{2}}} d x=\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)-\frac{x}{2} \sqrt{a^{2}-x^{2}}+C$

1) $\int_{0}^{\pi} \sin ^{2} x d x$
2) $\int \sec ^{3} x \tan x d x$
3) $\int \tan ^{4} x d x$
4) $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
5) $\int \ln x d x$
6) $\int \frac{x+3}{x+1} d x$
7) Find the arc length of the curve $y=(x / 2)^{2 / 3}$ from $x=0$ to $x=2$. Of course, you can express the relation as $2 y^{3 / 2}=x$ if you like.
8) Use an integral as in Ch 6.4 to find the surface area of the sphere of radius 2 centered at the origin. [Do not use the standard formula for the area.]

In each of the next 2 problems, answer with an integral. You do not have to evaluate them.
9) This is a slight variation on Ch.6.5 Ex.5. A conical tank is 10 ft tall and has radius 5 ft at the top (so, in the notation from class, $r=y / 2$). It is filled to a depth of 7 ft with water weighing 62 lbs per cubic ft . How much work is required to pump the water to the rim at the top? Answer with an integral.
10) The region where $x^{3} \leq y \leq 8$ and $0 \leq x \leq 2$ is revolved around the line $x=-2$. Use the shell method to find the volume (find an integral for it).
11) [8 pts] Begin the partial fractions method for solving this integral. You should go as far as writing out some fractions with A, B, etc in them, but you do not have to solve for the A, B, etc and do not have to compute any antiderivatives.
$\int \frac{x+3}{(x+1)^{2}\left(x^{2}+4\right)} d x$
12) [10 pts$]$ Choose ONE proof to do, and circle it. If you use the back of the page, leave a note here.
A. Prove formula a, b or c from the table on page 1 of this exam using standard Ch. 8 methods. Do not simply take a derivative of the right side.
B. State and explain in detail the Ch. 6.4 formula for surface area. Include a picture or two, a Riemann sum and several sentences. You can use a formula from 6.3, related to arc length, without proving it.

Remarks + Scale: The average was approx 62 , with two high scores of 92 . There was only one score between 51 and 71 . The results were a bit better on the first 4 problems (approx 78%) and worse on 8 and 9 (approx 43%). An advisory scale for the exam, and also for your current semester average:

$$
\begin{aligned}
& \text { A's } 70-100 \\
& \text { B's } 60-69 \\
& \text { C's } 50-59 \\
& \text { D's } 40-49
\end{aligned}
$$

Answers:

1) $\pi / 2$ using the trig identity which has appeared several times this term.
2) Set $u=\sec x$ and get $\int u^{2} d u=\cdots=\frac{\sec ^{3} x}{3}+C$.
3) From part b of the table with $n=2$, get $\frac{\tan ^{3} x}{3}-\int \tan ^{2} x d x$. To finish, do it again with $n=2$, or use $-\int \tan ^{2} x d x=-\int \sec ^{2} x-1 d x=-\tan x+x+C$.
4) From part c of the table with $a=2$, get $2 \sin ^{-1}\left(\frac{x}{2}\right)-\frac{x}{2} \sqrt{4-x^{2}}+C$. It is also OK, but much longer, to set $x=2 \sin \theta$.
5) $x \ln x-x+C$ from IBP. It is probably worthwhile to memorize this answer, but it is not very hard to derive.
6) $\int \frac{(x+1)+2}{x+1} d x=x+2 \ln |x+1|+C$. You could start with long division or with $u=x+1$ instead.
7) It is better to use the hint $x=2 y^{3 / 2}$ and $x^{\prime}=3 y^{1 / 2}$, as in the text. We get $\int_{0}^{1} \sqrt{1+9 y} d y=\frac{1}{9} \int_{1}^{10} \sqrt{u} d y=\frac{2}{27}\left[10^{3 / 2}-1\right]$.

Using $y=(x / 2)^{2 / 3}$ is a bit dubious (see the text or lecture notes for the complaint) but it does lead to the correct answer in this example, and in that case I gave full credit.
8) From $f(x)=\sqrt{4-x^{2}}$ get $\mathrm{SA}=\int_{-2}^{2} 2 \pi \sqrt{4-x^{2}} \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x=\cdots=16 \pi$.
9) $V=\int_{0}^{7} 62 \pi(y / 2)^{2}(10-y) d y$.
10) The radius is $x-(-2)$. The height is $8-x^{3}$. So $V=\int_{0}^{2} 2 \pi(x+2)\left(8-x^{3}\right) d x$.
11) $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C x+D}{x^{2}+4}$.
12) See the textbook for B. For (a), $1-\cos a x=2 \sin (a x / 2)$ and $\frac{1}{\sin }=\csc$, etc. For (c),
let $x=a \sin \theta$, etc. The best proof of (b) is not so similar to the other reduction formulas as I expected. But the proof is easy, if you start this way

$$
\int \tan ^{n} x d x=\int\left(\sec ^{2}-1\right) \tan ^{n-2} x d x=\int u^{n-2} d u-\int \tan ^{n-2} x d x
$$

etc

