You can use the Ch.7.6 error bounds $\left|E_{M}\right| \leq \frac{(b-a)^{3} K_{2}}{24 n^{2}}$ and $\left|E_{T}\right| \leq \frac{(b-a)^{3} K_{2}}{12 n^{2}}$ for any problems on this exam.

1) $[10$ points total] Note the formulas above.

1a) Find n, as small as you can, so that the midpoint approximation M_{n} for $\int_{0}^{2} 5 x^{3} d x$ is accurate to 3 decimal places. You should not need a calculator if you know that $(300)^{2}=$ 90,000 , etc. Justify briefly (unless your work is already very clear).

1b) For the same problem as 1a), will M_{n} be greater than, less than, or equal to $\int_{0}^{2} x^{3} d x$? Explain briefly.
2) [10 points] Determine whether this improper integral converges or not. If it converges, compute it using the methods of Ch. 7.7 (without shortcuts), $\int_{-1}^{1} x^{-2 / 3} d x$.
3) [10 points] Compute $\int \frac{2 x^{2}-9 x-9}{x^{3}-9 x} d x$.
4) [10 points] Show that $a_{n}=\frac{n}{e^{n}}$ is eventually strictly monotone.
5) [10 points total] Compute each sum, or explain why the series diverges:
a) $\sum_{k=0}^{\infty}\left(\frac{1}{k+2}-\frac{1}{k+1}\right)$
b) $\sum_{k=0}^{\infty}(\sqrt{k+1}-\sqrt{k})$
6) [10 points] Find the general term of the sequence $\frac{1}{3}, \frac{-1}{9}, \frac{1}{27}, \frac{-1}{81} \ldots$. Determine whether the sequence converges, and if so, find its limit.
7) [10 points total] Determine whether the series converges, with brief justification.
a) $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\ln (k)}$
b) $\sum_{k=2}^{\infty} \frac{1}{k \ln (k)}$
8) [20 pts] Answer True or False: you do not have to explain.

The sequence $a_{n}=\frac{n^{2}+8 n+1}{n^{3}+1}$ is eventually monotone.
The alternating harmonic series can be rearranged to converge to 7 .
The alternating harmonic series converges absolutely.
Every monotone sequence that is bounded above converges.
If $a_{0}=1$ and $a_{n+1}=5-a_{n}, \forall n \geq 1$, then $a_{2016}=a_{2012}$.
T_{100} always gives a smaller error than M_{4}.

The improper integral $\int_{0}^{\infty} x^{p} d x$ diverges for all $p>0$.
The series $\sum_{k=1}^{\infty} k^{-p}$ diverges if $0.5<p<1.5$.
The Fibonacci sequence $\left\{f_{n}\right\}$ diverges but the sequence $\left\{\frac{f_{n+1}}{f_{n}}\right\}$ converges.
The partial sums of $\sum_{k=1}^{\infty} \frac{3}{k^{2}+2}$ are bounded.
9) $[10 \mathrm{pts}]$ Compute $\int \frac{x^{2}-8}{x+3} d x$

Bonus) The Gamma function is defined by $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ for $x>0$. Compute $\Gamma(10)$. You can answer in terms of a more basic function rather than an explcit number (for example, an answer such as 5^{10} would be OK).

Remarks and Answers: The average among the top 22 was 65% with two high scores of 82 each. The averages were under 50% on problems 1 and 4, but approx 90% on 9 . Here is a scale for the exam, the same scale as for Exam II:

$$
\begin{aligned}
& \text { A's } 72 \text { to } 100 \\
& \text { B's } 62 \text { to } 71 \\
& \text { C's } 52 \text { to } 61 \\
& \text { D's } 42 \text { to } 51
\end{aligned}
$$

Current scale for the semester, 3 exams only:

$$
\begin{aligned}
& \text { A's } 73 \text { to } 100 \\
& \text { B's } 63 \text { to } 72 \\
& \text { C's } 53 \text { to } 62 \\
& \text { D's } 43 \text { to } 52
\end{aligned}
$$

1a) $n=201$. Use $\frac{2^{3} \cdot 60}{24 \cdot n^{2}}<0.0005$ so that $n^{2}>40,000$. There were many minor mistakes on this one, such as $K_{2}=30 x=30$, but you should set $x=2$, to maximize $30 x$, and get $K_{2}=60$.

1b) M_{n} is smaller than the integral because x^{3} is concave up (see lecture notes).
2) It converges to 6 . Since there is a VA at $x=0$, use 'abc' and $\lim _{m \rightarrow 0^{-}} \int_{-1}^{m} x^{-2 / 3} d x=$ $\cdots=3$, etc.
3) $\ln |x|+2 \ln |x+3|-\ln |x-3|+C$ from partial fractions.
4) It is eventually decreasing. The two most common explanations were these:
a) $\frac{a_{n+1}}{a_{n}}=\frac{n+1}{n e}<1$ if $n \geq 1$, because $\frac{n+1}{n}=1+\frac{1}{n} \leq 2<e$. You should include all of this explanation (or something equivalent) and of course it is OK to say more.
b) Let $f(x)=x e^{-x}$ and get $f^{\prime}(x)=[1-x] e^{-x}<0$ for $x>1$. This implies $a_{n}<a_{n+1}$
for $n>1$. In my opinion, the step $f(x)=x e^{-x}$ is needed, because mixing derivatives with the letter ' n ' is bad notation.

5a) -1 . It is telescoping and $s_{n}=-1+\frac{1}{n+2} \rightarrow-1$.
5b) D, similar to 5a, but $s_{n}=\sqrt{n+1} \rightarrow \infty$.
6) $a_{k}=(-1)^{k+1} 3^{k}$ for $k=1,2, \ldots$, it converges to 0 . Many people thought this was a problem about series, and made it harder than it was, though the word sequence is used twice in the problem. You do not need a convergence test for this.

7a) C, by the A.S.T. (and show a little work).
7b) D, by the Int.T (and show a little work). These two explanations are the only correct answers I recall. You cannot compare 7 b to the H.S., for example, because the HS is bigger. You cannot use the A.C.T. in 7a (it does not CA).
8) TTFFT FTFTT
9) $x^{2} / 3-3 x+\ln |x+3|+C$. The rational function is improper, so divide. A few people used $x^{2}-8=(x+3)(x-3)+1$ instead, which is OK and leads to equivalent calculations. But division is more reliable.
B) 9! from IBP many times (or seeing the pattern earlier than that).

