1) [8 pts each] Solve each, or show it diverges. Use a limit with any improper integrals.

$$
\begin{aligned}
& \int \frac{d x}{x\left(x^{2}+4\right)} \\
& \int_{2}^{\infty} \frac{d x}{x(\ln (x))^{2}}
\end{aligned}
$$

2) [8 pts] Use a geometric series to express the repeating $0.2020 \overline{20} \ldots$ as a fraction of two integers.
3) [10 pts total] 3a) Approximate $\int_{0}^{3} \sqrt{x+3} d x$ using the Trapezoid Rule with $n=3$. Simplify your answer completely using decimal notation (give an answer such as 3.81). You can use the following approximate data.

$$
\begin{aligned}
\sqrt{2} & =1.41 \\
\sqrt{3} & =1.73 \\
\sqrt{5} & =2.24 \\
\sqrt{6} & =2.45 \\
\sqrt{7} & =2.65
\end{aligned}
$$

Remark: If $f(x)=\sqrt{x+3}$ then $f^{\prime \prime}(0)=-1 / 20$ and $f^{\prime \prime}(3)=-1 / 60$.
3b) Recall that $\left|E_{T}\right| \leq \frac{M(b-a)^{3}}{12 n^{2}}$ where M is related to $f^{\prime \prime}$. How large must n be so that the error when using T_{n} is at most $1 / 8000$?
4) (6 pts each) State whether each sum converges or diverges, and justify, usually by naming a convergence test and showing some work.
a) $\sum_{k=1}^{\infty} \frac{5 \sqrt{k}}{k^{2}+7}$
b) $\sum_{k=1}^{\infty} \frac{e^{n}}{5+e^{n}}$
c) $\sum_{k=1}^{\infty}\left(\frac{2 k}{k+2021}\right)^{k}$
d) $\sum_{k=1}^{\infty} \frac{\ln k}{k}$. Typo corrected on $11 / 16$.
e) $\sum_{k=3}^{\infty} \frac{(-1)^{k}}{k \ln (k)}$.
5) (6 pts$)$ Find the interval of convergence of $\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k} k^{2}}$.
6) (20 pts) Answer True or False:

If $\sum\left(a_{k}-2\right)$ converges then $\lim a_{k}=2$.
$\int_{0}^{1} x^{-3} d x$ converges.

If a sequence is decreasing, then it is bounded above.
If $\sum\left(a_{k}+b_{k}\right)$ converges then $\sum a_{k}$ and $\sum b_{k}$ both converge.
Simpson's Rule on $\int_{0}^{6} x^{3}+x^{2} d x$ with $n=10$ produces an exact answer.
If $\sum a_{k}$ converges, then its partial sums are bounded.
The harmonic series converges conditionally.
The alternating harmonic series can be rearranged to converge to 2017.
The Divergence Test is inconclusive for the series $\sum_{k=1}^{\infty} \frac{13^{k}}{12^{k}+k}$
The Ratio Test is inconclusive for the series $\sum_{k=3}^{\infty} \frac{k^{2}}{k^{2}+7}$
7) (10 pts) Choose ONE proof, explain thoroughly:
a) State and prove the Comparison Test using partial sums. You can omit the contrapositive part.
b) State the main theorem about convergence of a geometric series and prove it. For max credit, prove the formula for s_{n} too.

Bonus [about 5 points]: Compute $\sum_{k=1}^{\infty} \frac{5}{k^{2}+5 k}$.

Remarks, Answers: The average was again approx 60% so this exam has the same scale as Exam 2. The high scores were 86 and 84 . The average scores were pretty similar on all the problems, except for $\# 5(28 \%)$.

1a) Using partial fractions, $\frac{1}{4} \ln |x|-\frac{1}{8} \ln \left|x^{2}+1\right|+C$.
1b) Converges to $\frac{1}{\ln 2}$. Use a $\lim _{M \rightarrow \infty}$ as usual, and set $u=\ln x$, etc.
2) $\frac{20}{99}$. Use $S=\frac{a}{1-r}$ with $a=0.20$ and $r=0.01$.

3а) 6.33
3 b) Set $M=1 / 20($ not $-1 / 20)$ and get $n=\sqrt{900}=30$. I would probably accept a similar number, such as 31 , if the method were correct.

4a) C. Compare it to a $\mathrm{p}=$ series with $\mathrm{p}=3 / 2$.
4b) D. The easiest method is the Divergence Test, but a few people succeeded with the Integral Test. I don't recall grading any other successful methods. I think the Comparison Test is always an option for a positive series, but it can be tricky.

4c) D. The Root Test is Best. The Div Test is possible.
4d) D. I expected people to use the Integral Test. It is also easy to compare with the

Harmonic Series, since $\ln k>1$ (eventually).
4e) C. Use the A.S.Test. I see no other options. This series does not "CA", so removing the $(-1)^{k}$ will not succeed. It might be worth a try if the AST were not so easy.
5) $I=[-2,2]$. The results on this one were rather low, so here is an outline of the work. As usual, start with the RTAC:

Part A: $\rho=\lim \cdots=|x| / 2$. Set $|x| / 2<1$ and get $-2<x<2$. This might be I, but we don't know yet if $x= \pm 2$ give C.
Part B1: Set $x=2$ and cancel the 2 's. We get a p -series with $\mathrm{p}=2$, which converges. So 2 gives $\mathrm{C}, 2 \in I$.

Part B2: Set $x=-2$ and get C again (using either AST or CA).
Answer: $I=[-2,2]$.
6) TFTFT TFTFT
7) See the text or lecture notes.

Bonus) I was pleasantly surprised that so many people used partial fractions to make this into a telescoping series, $\sum\left(\frac{1}{k}-\frac{1}{k+5}\right)$, but nobody quite got to the correct final answer. If you write out s_{6} for example, you will see the pattern. The $1 / k$ term cancels out with some $-1 /(k+5)$ term if $k>5$ (but not if $\mathrm{k}=1,2,3,4,5)$. The answer is $S=$ $1+1 / 2+1 / 3+1 / 4+1 / 5$, which you did not have to simplify.

