1) (15pts) Compute and simplify. Use limits on any improper integrals.

$$
\begin{aligned}
& \frac{d}{d x} \int_{0}^{x^{2}} \sin \left(t^{2}\right) d t \\
& \int_{0}^{\pi / 4} \tan ^{2}(x) d x \\
& \int_{0}^{2}\left|x^{2}-1\right| d x
\end{aligned}
$$

2) (10pts) Answer True or False.

The alternating harmonic series converges conditionally.
The average value of $\cos (4 x)$ on $[0,2 \pi]$ is zero.
If $|r|<1$ then $r^{2}+r^{3}+r^{4}+\ldots$ converges to $\frac{r^{2}}{1-r}$.
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{3 x}=e^{3}$
The polar equations $r=\sin 2 \theta$ and $r=-\sin 2 \theta$ have the same graphs.
3) (10 pts) Suppose a particle has position $s(t)$ after t seconds. Suppose the acceleration is $a(t)=2+t$, the initial velocity is $v_{0}=3$ and the initial position is $s(0)=s_{0}=4$. Find the displacement for the period $0 \leq t \leq 2$.
4) (10 pts) Find the radius and interval of convergence of $\sum_{k=1}^{\infty} \frac{5^{k}}{k^{2}} x^{k}$.
5) (5pts) Classify the series (as D, CA or CC) with a brief justification.
$\sum_{k=1}^{\infty} \frac{(-1)^{k} k+2}{k(k+3)}$
6) (5pts) Classify the series (as D, CA or CC) with a brief justification.
$\sum_{k=1}^{\infty} \frac{\sin (k)}{k^{3}}$
7) (10pts) Approximate $\tan ^{-1}(0.1)$ to three decimal places using a McLaurin Series. You do not have to simplify any fractions/roots/etc. Explain your method briefly (how you made the best possible choice of n).
8) (10pts) Find the first five nonzero terms of the McLaurin Series for $f(x)=\frac{4 x-2}{x^{2}-1}$. For full credit, use partial fractions and 1-2 known series.
9) (7 pts) What kind of curve is $r=2+2 \sin (\theta)$ (name it)? Find $d y / d x$ at the point where $\theta=0$.
10) (8 pts) Find the area inside the curve $r=2 \cos (3 \theta)$.
11) (10 pts) Choose ONE to do (as usual, you can continue on the back);
A. State and prove the Divergence Test.
B. State and prove the Comparison Test.
C. Prove that the Harmonic Series diverges directly from the definition.

Bonus) (3 pts) According to a recent article, who was the meanest man in math ?

Remarks and Answers: The average score was 48 based on the top 18 scores, which is unusually low. The high score was 68 , followed by many scores in the 50 's. The average score varied from about 40% to 65% on most of the problems, with a low of 22% on Problem 7 (though this was assigned as HW, see 9.9.6). I do not set a separate scale for finals, and have not yet set one for the semester grade.
1a) $2 x \sin \left(x^{4}\right)$. Use the FTC and Chain Rule: $\frac{d}{d x} A\left(x^{2}\right)=A^{\prime}\left(x^{2}\right) 2 x=\left.\sin \left(t^{2}\right)\right|_{t=x^{2}} 2 x$.
1b) $1-\pi / 4$, from $\int \tan ^{2} x=\int\left(\sec ^{2} x-1\right)=\tan (x)-x$.
1c) Use the abc thm (with $b=1$) to get $2 / 3+4 / 3=2$.
2) TTTTT
3) $34 / 3$, from $v=\int a=t^{2} / 2+2 t+3, s=\int v=t^{3} / 6+t^{2}+3 t+4, s(2)-s(0)=34 / 3$.
4) The RTAC gives $\rho=5|x|<1$, so $|x|<1 / 5, R=1 / 5, I=[-1 / 5,1 / 5]$ (after checking that both endpoints are included).
5) CC [3 points for this]. It converges by the A.S.Test, but fails to CA by the Limit Comparison Test (with $1 / k$) [2 points for this - but other explanations are possible].
6) CA, by comparing $|\sin (k)| / k^{3}$ with $1 / k^{3}$. I think that any other good explanation must at least include the absolute values.
7) Since we know (from the usual table) that $\tan ^{-1}(x)=x-x^{3} / 3+x^{5} / 5 \ldots$ for $|x|<1$, we can set $x=0.1$, and express $\tan ^{-1}(0.1)$ as the sum S of an alternating series. The term $(0.1)^{3} / 3$ is already less than 0.0005 so we can approximate S by just the first term, 0.1.

We might try to use the usual bound on $R_{n}(0.1)$ instead (and this idea usually got partial credit). But that does not work out very well because M is rather hard to compute for this function (sorry - didn't notice this issue in time).
8) From PFs, $f=\frac{1}{x-1}+\frac{3}{x+1}$. We all know the series $\frac{1}{1-x}=1+x+x^{2}+\ldots$ and $\frac{1}{1+x}=1-x+x^{2}-\ldots$. Multiply these by -1 and by 3 , then add, to get

$$
f(x)=2-4 x+2 x^{2}-4 x^{3}+2 x^{4} \ldots
$$

Plan 2: We can get the series for $\frac{1}{x^{2}-1}$ and multiply that by $4 x-2$ (try it!).
Plan 3: We could use the usual $c_{n}=\frac{f^{(n)}(0)}{n!}$, except that this gets messy for large n (and violates the instructions to use PFs).
9) Cardioid (I counted "limacon" as OK, but not quite as good). $d y / d x=2 / 2=1$.
10) This is a 3 -petal rose; a graph is highly recommended to set-up the calculation, but I did not require it. $A=\frac{1}{2} \int_{0}^{\pi} 4 \cos ^{2}(3 \theta) d \theta=\pi$. I used $\beta=\pi$ here, because that's when retracing starts. I also took a shortcut to compute the integral, replacing $\cos ^{2}(3 \theta)$ by $1 / 2$. But you should check that, and not use it unless you understand when it works.

It is also OK (and maybe safer) to use symmetry. The area is 6 times that of half a petal: $A=\frac{6}{2} \int_{0}^{\pi / 6} 4 \cos ^{2}(3 \theta) d \theta=\pi$. Here, I got $\beta=\pi / 6$ by setting $\cos (3 \beta)=0$. Remark: Very few people got this exactly right. If you want partial credit on a problem like this, at least explain your plan, including your choice of β, probably also including a graph.
11) See the text. For each, you should include partial sums.

Bonus: J.Bernoulli.

