1) (10 pts) Find $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta_{x_{k}}$ given that $f(x)=x+1, a=0, b=4, n=3$,
$\Delta_{x_{1}}=1, \Delta_{x_{2}}=1$ and $\Delta_{x_{3}}=2$ and
$x_{1}^{*}=1 / 3, x_{2}^{*}=3 / 2, x_{3}^{*}=3$.
2) (10pts) Find an integral for the volume of the solid obtained by revolving the region bounded by $x=0, x+y=3$ and $y=0$ around the line $x=-2$. Shells are suggested, but other methods are OK. You do not have to evaluate the integral.

3a) (5pts each) Compute $\int x \ln (3 x) d x$
3b) Compute $\int \frac{x^{2}+2}{x^{3}-2 x^{2}-3 x} d x$
4) (5pts each) Classify each series as D for divergent, CA for absolutely convergent, or CC for conditionally convergent. Justify your answers with convergence tests and calculations.

$$
\begin{aligned}
& \sum_{k=2}^{+\infty} \frac{k^{2}}{k^{3}-1} \\
& \sum_{k=2}^{+\infty} \frac{(-1)^{k+1}}{\ln (k)}
\end{aligned}
$$

5) (10 pts) Find the McLaurin series for $f(x)=\sqrt{1+5 x}$. Write out at least 3 terms. For maximum credit, also write your answer in Sigma notation.
6) $(10 \mathrm{pts})$ Find the interval of convergence of $\sum_{k=2}^{\infty} \frac{(3 x)^{k}}{5 k}$.
7) (10pts) Find the area of the region inside the circle $r=2 \sin \theta$ but outside the circle $r=1$. Small hint $\# 1$: if you use the same notation I do, you can set $\alpha=\pi / 6$, but compute β yourself. Small hint $\# 2$: I said in class that a term like $\cos (2 \theta)$ often arises in problems like this one, but often has no effect on the final answer. You should be more careful here.
8) (20pts) Answer True or False:

The curve $r=5 \cos (3 \theta)$ has at least 5 different horizontal tangent lines.
$\lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{x}=e^{3}$
The Maclaurin series for $\tan ^{-1}(x)$ converges for all x .
If $0 \leq a_{n} \leq b_{n}$ and $\lim b_{n}$ converges, then $\lim a_{n}$ converges.
The area enclosed by $r=3 \sin (2 \theta)$ is equal to the area enclosed by $r=3 \cos (2 \theta)$.

$$
\lim _{n \rightarrow \infty} \cos (2 n \pi)=1
$$

Every monotonic sequence that is bounded above converges.
If $a_{0}=3$ and $a_{n+1}=5-a_{n}, \forall n \geq 1$, then $a_{2018}=a_{1940}$.

The alternating harmonic series has bounded partial sums.
The average value of $\ln (x)$ on $[1 / 2,2]$ is positive.
9) (10pts) Choose ONE to do;
A. State and prove the integral formula for area in polar coordinates.
B. State and prove the Divergence Test.

Remarks and Answers: The average was approx 56, which a bit low. The best scores were 76 and 73 . The average results on each problem were similar, except maybe problem 4 (below 40%). I do not set a separate scale for the final, but will include this when setting the semester scale.

1) $(1 / 3+1) \cdot 1+(3 / 2+1) \cdot 1+(3+1) \cdot 2=71 / 6$.

This is an early problem from approx Ch.5.4 or 5.5. It might help to imagine this is the area of three rectangles, added. A fairly common mistake was to use $1 / 3$ instead of $(1 / 3+1)$, etc. Maybe ignoring that $f(x)=x+1$?
2) $V=\int_{0}^{3} 2 \pi(x+2)(3-x) d x$. The radius is $x-(-2)$ and the height is $y=x-3$. A picture is strongly suggested.

3a) Using IBP, $\frac{x^{2} \ln (3 x)}{2}-\frac{x^{2}}{4}+C$. Notice that $\frac{d}{d x} \ln (3 x)=\frac{1}{x}$ by the Chain Rule or from $\ln (3 x)=\ln (3)+\ln (x)$.

3b) $(-2 / 3) \ln |x|+(11 / 12) \ln |x-3|+(3 / 4) \ln |x+1|+C$. Notice that $Q(x)=x(x-3)(x+1)$. You can get $A=-2 / 3$ etc, using the shortcut, or using the standard method.

4a) D. Compare with $\sum 1 / k$.
4b) CC. Use the AST (for C) and compare with $\sum 1 / k$ (vs CA). Note $\ln (k+1)<k$.
5) You can substitute $5 x$ into the usual binomial formula (in Table 9.9.1) and get $1+$ $(1 / 2) 5 x+(1 / 2)(-1 / 2)(5 x)^{2} / 2+\cdots$. You can simplify it to $1+5 x / 2-25 x^{2} / 8+\cdots$
For full credit, write something like $1+\sum_{k=1}^{\infty}[-1 \cdot 1 \cdot 3 \cdot 5 \cdots(2 k-3)] \frac{(-5 x / 2)^{k}}{k!}$. There are various ways to write it (but none are very pretty, as far as I know).
6) Using RTAC with $\rho=\cdots=|3 x|<1$, we find the endpoints of I are $\pm 1 / 3$. After checking these separately, as usual (but many people skipped this step), we get $I=[-1 / 3,1 / 3$). You can factor out the 5 from the start, if you like, and just ignore it.
7) Draw the circles, which overlap, and perhaps two special radii. Subtract two areas. $A=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(2 \sin \theta)^{2}-1^{2} d \theta=\cdots=\pi / 3+\sqrt{3} / 8$. It is also OK to use symmetry and start
with $A=\int_{\pi / 6}^{\pi / 2}[\mathrm{etc}]$. The most common problem by far was a bad start.
8) FTFFT TFTTT
9) See the textbook.

