1) (10 pts) A particle moves along the s-axis. Given that $v(t)=3 t^{2}-2 t$ and $s(0)=1$, find the position function of the particle.
2) (10pts) Find an integral for the volume of the solid obtained by revolving the region bounded by $x=0, y=5-x$ and $y=0$ around the line $x=-1$. Shells are suggested, but other methods are OK. You do not have to evaluate the integral.

3a) (5pts each) Compute $\int 2 x \ln (x) d x$
3b) Compute $\int \frac{x^{2}+3 x-2}{x^{3}+2 x^{2}-3 x} d x$
4) (5pts each) Classify each series as D for divergent, CA for absolutely convergent, or CC for conditionally convergent. Justify your answers with convergence tests and calculations.

$$
\begin{aligned}
& \sum_{k=2}^{+\infty} \frac{k^{4}}{k^{5}-1} \\
& \sum_{k=2}^{+\infty} \frac{(-1)^{k}}{\ln (k+1)}
\end{aligned}
$$

5) (10 pts) Find the McLaurin series for $f(x)=\sqrt{1+2 x}$. Write out at least 3 terms. For maximum credit, also write your answer in Sigma notation.
6) (10pts total) a) Write Lagrange's bound on R_{n} (the one with $M /(n+1)$! in it).
b) Write the McLaurin series for $\sin (x)$ (from memory is OK).
c) Use the bound in part a) to show this series converges to $\sin (x)$ for all x (show that the remainder goes to 0).
7) (10pts) Find the area of the region inside the cardioid $r=1+\cos (\theta)$.
8) (20pts) Answer True or False:

The series $2-1-1+2-1-1+2-1-1 \ldots$ converges to 0 .
$\lim _{n \rightarrow \infty} \cos (2 n \pi)=1$.
Every decreasing sequence that is bounded above converges
If $a_{0}=2$ and $a_{n+1}=5-a_{n}, \forall n \geq 1$, then $a_{2018}=a_{1942}$.
The alternating harmonic series converges to $\ln (2)$.
The harmonic series has bounded partial sums.
The average value of $\cos (5 x)$ on $[0,2 \pi]$ is zero.
If $|r|<1$ then $r^{2}+r^{3}+r^{4}+\ldots$ converges to $\frac{r^{2}}{1-r}$.

$$
\lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{x}=e^{3}
$$

The polar equations $r=\sin 2 \theta$ and $r=\cos 2 \theta$ have the same graphs.
9) (10pts) Choose ONE to do;
A. State and prove the integral formula for area in polar coordinates.
B. State and prove the Comparison Test.

Remarks and Answers: The average was approx 66, which is fairly normal, maybe even a bit high for a final. The best scores were 94 and 93 . The average results on each problem were OK, except maybe problem 6 (approx 40%). I do not set a separate scale for the final, but will include this when setting the semester scale.

1) $s(t)=t^{3}-t^{2}+1$.
2) $V=\int_{0}^{5} 2 \pi(x+1)(5-x) d x$. I suggest using a sketch.

3a) $x^{2} \ln (x)-x^{2} / 2+C$
3b) $(1 / 2) \ln |x|+(-1) \ln |x-1|+(8 / 3) \ln |x+1|+C$. Notice that $Q(x)=x(x-1)(x+3)$. You can get $A=1 / 2$ etc, using the shortcut, or using the standard method.
recheck this ans...
4a) D, by the Comp.Test (with $b_{k} \geq 1 / k$). Or, use the LCT or perhaps the integral test (I have not checked that $f(x)$ decreases, but it probably works).

4b) CC. It converges by the AST but not absolutely by comparison with $1 / k$ (because $\ln (k+1)<k$ eventually).
5) You can substitute $2 x$ into the usual binomial formula (in Table 9.9.1) and get $1+$ $(1 / 2) 2 x+(1 / 2)(-1 / 2)(2 x)^{2} / 2+\cdots$. You can simplify it to $1+x-x^{2} / 2+\cdots$

For full credit, write something like $1+\sum_{k=1}^{\infty}[-1 \cdot 1 \cdot 3 \cdot 5 \cdots(2 k-3)] \frac{(-x)^{k}}{k!}$. There are various ways to write it (but none are very pretty, as far as I know).

6a) $R_{n}(x) \leq \frac{M\left|x-x_{0}\right|^{n+1}}{(n+1)!}$. 6b) $x-x^{3} / 3!+x^{5} / 5!-\cdots$ 6c) Part 6a) simplifies to $R_{n}(x) \leq$ $\frac{|x|^{n+1}}{(n+1)!}$ and we saw in class that $\lim \frac{\mid x n^{n+1}}{(n+1)!}=0$ for all x. So, the remainder also goes to zero, which means the series converges to $\sin x$ for all x.

The results were low, though parts (a) and (b) were only memorization, and the results seemed OK on (b).
7) $A=\frac{1}{2} \int_{0}^{2 \pi}(1+\cos \theta)^{2} d \theta=\cdots=3 \pi / 2$. I strongly suggest a sketch and a sanity check. This is not required, but I do give more partial credit for reasonable answers than for crazy
ones (like $A=0$ or $A=18 \pi$).
8) FTFTT FTTTF
9) See the text.

