1) [5] Find the rectangular coordinates of the point $(\sqrt{2}, \pi / 4)$, given in polar coordinates.
2) [7] Compute $\int x^{3} \ln x d x$
3) [7] Compute $\int \frac{1}{x^{2}-7 x+6} d x$
4) [7 each] Classify each series. You can answer with CC, CA or D, but justify your answers, usually with a convergence test and a calculation.
a) $\sum_{k=1}^{\infty}(-1)^{k} \frac{4}{3 k-1}$
b) $\sum_{k=0}^{\infty} \frac{(-3)^{k}}{k!}$
5) $[7]$ Let $r=\cos (3 \theta)$ (a rose). Find the area enclosed by this curve.
6) [7] Again, let $r=\cos (3 \theta)$. Find $d y / d x$ at the point where $\theta=\pi / 4$.
7) [10] Find the interval of convergence of the series $\sum_{k=1}^{\infty} \frac{x^{k}}{k+1}$.
8) [7] A conical water tank is 9 ft tall with a radius of 3 ft at the top. It contains water to a depth of 6 ft with density 62 lbs per cubic ft . How much work is required to pump the water over the top of the tank? Express your answer as a definite integral, with your reasoning. You do not have to compute it.
9) [7] Find the Taylor series for $f(x)=e^{x}$ at the point $x_{0}=2$. For maximum credit, use summation notation.
10) [7] Let R be the region bounded by $x=0, y=x^{1 / 3}$ and $y=3$. Find the volume of the solid obtained by revolving R around the y-axis. For maximum credit, sketch the solid and describe your method (disks, washers, shell, etc). Evaluate the integral, but you do not have to completely simplify the number.
11) [15] Answer True or False:

The function $f(x)=1 / x^{2}$ is integrable on $[-3,3]$.
The function $f(x)=\tan ^{-1}(x)$ is integrable on $[0,2]$.
The average value of $f(x)=5+\sin x$ on an interval $[a, b]$ is always at least 5 .
Every Riemann sum for $\int_{0}^{3} 2 x d x$ is less than 10 .
There are more than two points on the cardioid $r=1+\cos \theta$ with a vertical tangent line.
12) [7] Choose ONE proof, explain thoroughly:
a) State the formula for Area using an integral in polar coordinates and justify it with pictures, a Riemann sum and a clear explanation.
b) State and prove the Divergence Test.

Bonus [5]: Compute π to two decimal place accuracy as a finite sum of fractions and explain your reasoning. You do not have to simplify the sum.

Remarks, Answers: The average grade was approx 64, which is not bad for a final exam. There were 3 scores in the low 80 's. This exam will probably not affect the scale much, but if the HW grades are high it might go up a couple of points. The grades were relatively high on problem 3 (80%) and low on problems 6,7 and 8 (43%).

1) $(1,1)$.
2) $\frac{x^{4} \ln x}{4}-\frac{x^{4}}{16}+C$.
3) $\frac{\ln |x-6|}{5}-\frac{\ln |x-1|}{5}+C$.

4a) CC, using the AST for C, and the CompT for "not CA".
4b) CA, using RTAC.
5) Sketch the rose carefully and notice the retracing. Note that $\cos 3 \theta=0$ when $\theta=\pi / 6$.

The area of the top half of one petal is $A=(1 / 2) \int_{0}^{\pi / 6} \cos ^{2} 3 \theta d \theta=\cdots=\pi / 24$. There are three petals, so the final answer is $A=6 \pi / 24=\pi / 4$.

Another approach is $A=(1 / 2) \int_{0}^{2 \pi} \cos ^{2} 3 \theta d \theta=\cdots=\pi / 2$. But this ignores retracing and is 2 x too big. So, the final answer is $A=(\pi / 2) / 2=\pi / 4$.

The usual shortcut, replacing the integrand $\cos ^{2} 3 \theta$ by $1 / 2$, gives the correct answer both times. But unless you are sure that works, using the trig identity is better.
6) 2. Start with $\frac{d y}{d \theta} / \frac{d x}{d \theta}=\cdots$, and $y=\cos (3 \theta) \sin \theta$ etc. It gets a bit messy but simplifies to 2 . People usually did OK on this one if they knew the first step.
7) $I=[-1,1$). The RTAC shows that I contains ($-1,1$) and maybe also $1-2$ endpoints, which you must check separately.
8) $62 \pi \int_{0}^{6}(y / 4)^{2}(12-y) d y$ (and stop). There were a couple of special exams with a 9 foot tank, with a slightly different answer. People who worked with a Riemann sum to reason out the formula generally did better than people who relied mainly on memory.
9) $\sum_{k=0}^{\infty} \frac{e^{2}(x-2)^{k}}{k!}$. Every $f^{(k)}(2)=e^{2}$, so the coefficients have a simple pattern (but several people thought $f^{(k)}=e^{0}$ or e^{x}, etc).
10) Using Disks (based on a horizontal line segment), $V=\int_{0}^{2} \pi\left(y^{3}\right)^{2} d y=\cdots=\frac{2^{7} \pi}{7}$.

It is OK to use Shells, but that is maybe a little harder. Not washers.
11) FTFFT
12) See the text.
B) Start from $\pi / 4=\tan ^{-1}(1)=1-1 / 3+1 / 5 \cdots$ (from a class on Taylor Series) and decide when to stop using either the R_{n} method the AST method. Since the instructions say "Compute", I gave little credit for answers like 314/1000, based mainly on memorization.

