1. (60 pts) Compute the integrals.

(a)
$$\int_{1}^{4} |x - 2| dx$$

(b) $\int_{0}^{1} e^{2x} dx$
(c) $\int \frac{1}{1 + x^{2}} dx$

2. (20 pts) Answer each with True or False. You do not have to explain these.

If f is integrable on [-5, 0], then it is also differentiable there.

If f is differentiable on [-5, 0], then it is also integrable there.

The area between the curves y = 2x and $y = x^2$ is $A = \int_0^2 2x - x^2 dx$.

 $\sum_{k=1}^{100} k^2 = 5050.$

3. (20 pts) Find the average value of $f(x) = x^2 - 1$ on the interval $[0, \sqrt{2}]$.

Remarks, Answers: The average grade among the top 20 was approx 65/100 (up from 60/100 among the same students on Quiz 0), a fairly normal result. The two highest scores were 97 and 95. No official scale, but a low C would be approx 52.

1a) 5/2. A sketch shows two triangles with areas 1/2 and 2, but geometry won't always work. The general method uses the abc-theorem, and $\int_{1}^{2} |x-2| dx = -\int_{1}^{2} x-2 dx = \cdots 1/2$, etc.

1b) $(e^2 - 1)/2$ from setting u = 2x. Some people tried $u = e^x$ or $u = e^{2x}$ instead. These might work, but they seem a bit harder, and I don't think anyone succeeded with them.

Practice your technique and practice trial-and-error. You will need these skills later.

1c) $\tan^{-1} x + C$. This is a memorization problem that you should know from MAC 2311. If not, start memorizing these !

2) FTTF. We went over these quickly in class, but feel free to ask me about them.

3) $\frac{1}{\sqrt{2}} \int_0^{\sqrt{2}} x^2 - 1 \, dx = \dots = -1/3.$