1. $(60 \mathrm{pts})$ Compute the integrals.
(a) $\int_{1}^{4}|x-2| d x$
(b) $\int_{0}^{1} e^{2 x} d x$
(c) $\int \frac{1}{1+x^{2}} d x$
2. (20 pts) Answer each with True or False. You do not have to explain these.

If f is integrable on $[-5,0]$, then it is also differentiable there.
If f is differentiable on $[-5,0]$, then it is also integrable there.
The area between the curves $y=2 x$ and $y=x^{2}$ is $A=\int_{0}^{2} 2 x-x^{2} d x$.
$\sum_{k=1}^{100} k^{2}=5050$.
3. (20 pts) Find the average value of $f(x)=x^{2}-1$ on the interval $[0, \sqrt{2}]$.

Remarks, Answers: The average grade among the top 20 was approx 65/100 (up from 60/100 among the same students on Quiz 0), a fairly normal result. The two highest scores were 97 and 95 . No official scale, but a low C would be approx 52 .

1a) $5 / 2$. A sketch shows two triangles with areas $1 / 2$ and 2 , but geometry won't always work. The general method uses the abc-theorem, and $\int_{1}^{2}|x-2| d x=-\int_{1}^{2} x-2 d x=\cdots 1 / 2$, etc.

1b) $\left(e^{2}-1\right) / 2$ from setting $u=2 x$. Some people tried $u=e^{x}$ or $u=e^{2 x}$ instead. These might work, but they seem a bit harder, and I don't think anyone succeeded with them.

Practice your technique and practice trial-and-error. You will need these skills later.
1c) $\tan ^{-1} x+C$. This is a memorization problem that you should know from MAC 2311. If not, start memorizing these !
2) FTTF. We went over these quickly in class, but feel free to ask me about them.
3) $\frac{1}{\sqrt{2}} \int_{0}^{\sqrt{2}} x^{2}-1 d x=\cdots=-1 / 3$.

