14.3-14.7 HOMEWORK

Graded by Learning Assistant Enzo De Oliveira.
I numbered the problems from each section and used a random number generator to select one problem from each section for 5 problems total.

The questions graded were

- Section 14.3: 71
- Section 14.4: 27
- Section 14.5: 11
- Section 14.6: 5
- Section 14.7: 33

Each question was out of 16 points, for a total of 80 points for accuracy. Another 20 points was awarded for neatness, legibility, work, stapling etc.

1. SECTION 14.3: 71

Find a function $z=f(x, y)$ whose partial derivatives are as given.

$$
\frac{\partial f}{\partial x}=3 x^{2} y^{2}-2 x \text { and } \frac{\partial f}{\partial y}=2 x^{3}+6 y
$$

Solution:
By choosing $\frac{\partial f}{\partial x}$ and integrating with respect to x we get,

$$
f(x, y)=x^{3} y^{2}-x^{2}+c(y)
$$

where $c(y)$ is some function of y.
Now differentiating with respect to y we obtain,

$$
\frac{\partial f}{\partial y}=2 y x^{3}+c^{\prime}(y)=2 x^{3} y+6 y
$$

So

$$
c^{\prime}(y)=6 y
$$

and

$$
c(y)=3 y^{2}+c
$$

where c is an arbitrary constant.
Therefore

$$
f(x, y)=x^{3} y^{2}-x^{2}+3 y^{2}+c
$$

2. SECTION 14.4: 27

Assuming y is a differentiable function of x , use Theorem 8 to find the value of $\frac{d y}{d x}$ at the given point.

$$
x^{2}+x y+y^{2}-7=0,(1,2)
$$

Solution:

Theorem 8 states that

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

So

$$
\begin{gathered}
F_{x}=2 x+y \\
F_{y}=x+2 y \\
\frac{d y}{d x}=-\frac{2 x+y}{x+2 y} \\
\left.\frac{d y}{d x}\right|_{(x, y)=(1,2)}=-\frac{2(1)+(2)}{(1)+2(2)}=-\frac{4}{5}
\end{gathered}
$$

3. SECTION 14.5: 11

Find the derivative of the function at P_{0} in the direction of \mathbf{u}.

$$
f(x, y)=2 x y-3 y^{2}, P_{0}(5,5), \mathbf{u}=4 \mathbf{i}+3 \mathbf{j}
$$

Solution:

$$
\begin{gathered}
\mathbf{v}=\frac{\mathbf{u}}{|\mathbf{u}|}=\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j} \\
\nabla f(x, y)=\langle 2 y, 2 x-6 y\rangle \\
\nabla f(5,5)=\langle 10,-20\rangle \\
\nabla f(5,5) \cdot \mathbf{v}=10 \cdot \frac{4}{5}-20 \cdot \frac{3}{5}=-4
\end{gathered}
$$

4. Section 14.6: 5

Find the equations for the (a) tangent plane and (b) normal line at the point P_{0}.

$$
\cos (\pi x)-x^{2} y+e^{x z}+y z=4
$$

Solution:

(a)

$$
\begin{gathered}
f_{x}=-\pi \sin (\pi x)-2 x y+z e^{x z} \\
f_{x}\left(P_{0}\right)=\pi \sin (\pi(0))-2(0)(1)+(2) e^{(0)(2)}=0-0+2=2 \\
f_{y}=-x^{2}+z \\
f_{y}\left(P_{0}\right)=-(0)^{2}+2=2 \\
f_{z}=x e^{x z}+y \\
f_{z}\left(P_{0}\right)=(0) e^{(0)(2)}+1=1
\end{gathered}
$$

Therefore the equation for the plane is

$$
\begin{gathered}
2(x-0)+2(y-1)+(z-2)=0 \\
2 x+2 y+z=4
\end{gathered}
$$

(b) Using the work from before the equation of the line is

$$
x=2 t, y=1+2 t, x=2+t
$$

5. Section 14.7: 33

Find the absolute maxima and minima of the functions on the given domain.
$f(x, y)=x^{2}+y^{2}$ on the closed triangular plate bounded by the lines $x=0, y=0, y+2 x=2$ in the first quadrant.

Solution:

First find the interior points.

$$
\begin{gathered}
f_{x}=2 x \\
f_{x}=0 \rightarrow x=0 \\
f_{y}=2 y
\end{gathered}
$$

$$
f_{y}=0 \rightarrow y=0
$$

So we obtain the point $(0,0)$ and $f(0,0)=0$.
Next we find the boundary points.
Along $x=0$

$$
f(0, y)=y^{2}
$$

The intersection between $y=2-2 x$ and $x=0$ means y ranges from 0 to 2 .
Which means $f(0,2)=2^{2}=4$ and $f(0,0)=0^{2}=0$
Along $y=0$

$$
f(x, 0)=x^{2}
$$

The intersection between $y=2-2 x$ and $y=0$ means x ranges from 0 to 1 .
Which means $f(1,0)=1^{2}=1$ and $f(0,0)=0^{2}=0$.
Along $y=2-2 x$

$$
\begin{gathered}
f(x, 2-2 x)=x^{2}+(2-2 x)^{2} \\
f(x)=5 x^{2}-8 x+4 \\
f^{\prime}(x)=10 x-8 \\
f^{\prime}(x)=0 \rightarrow x=\frac{4}{5} \\
y=2-2\left(\frac{4}{5}\right) \rightarrow y=\frac{2}{5} \\
f\left(\frac{4}{5}, \frac{2}{5}\right)=\frac{4}{5}
\end{gathered}
$$

Therefore the absolute maximum is 4 at $(0,2)$ and the absolute minima is 0 at $(0,0)$.
Common Mistakes and feedback:

- Read the directions to make sure you are doing all the parts.
- Show evaluation! Prove you know whaat you are doing.
- Changing vector notation led to mistakes. Stick with one. Emphasize those pointy brackets.
- Explaain your work when needed to get rid of ambiguity.
- Staple your work so you do not lose any papers.
- For finding extrema, make sure to plug in the boundary equation so you can solve 1 variable optimization.
- If you submitted your paper online, there was no physical feedback to give, only your grade.
If you believe there were any mistakes, or have questions about how I graded your work, feel free to email me or show up to the LA sessions.

