14.8-15.4 HOMEWORK

Graded by Learning Assistant Enzo De Oliveira.
I numbered the problems from each section and used a random number generator to select one problem from each section for 5 problems total.

The questions graded were

- Section 14.8: 3
- Section 15.1: 21
- Section 15.2: 31
- Section 15.3: 1
- Section 15.4: 11

Each question was out of 16 points, for a total of 80 points for accuracy. Another 20 points was awarded for neatness, legibility, work, stapling etc.

1. Section 14.8: 3

Find the maximum value of $f(x, y)=49-x^{2}-y^{2}$ on the line $x+3 y=10$.

Solution:

First, establish that $g(x, y)=x+3 y-10=0$. Second, the two conditions that need to be met are $\nabla f=\lambda \nabla g$ and $g(x, y)=0$.

$$
\begin{gathered}
\nabla f=\lambda \nabla g \\
-2 x \mathbf{i}-2 y \mathbf{j}=\lambda \mathbf{i}+3 \lambda \mathbf{j} \\
\lambda=-2 x \text { and } 3 \lambda=-2 y \\
x=-\frac{\lambda}{2} \text { and } y=-\frac{3 \lambda}{2}
\end{gathered}
$$

Plugging into $g(x, y)=0$

$$
\begin{gathered}
\left(-\frac{\lambda}{2}\right)+3\left(-\frac{3 \lambda}{2}\right)=0 \\
\lambda=-2
\end{gathered}
$$

Plugging back into our λ equations for x and y

$$
x=1 \text { and } y=3
$$

Absolute maximum:

$$
f(1,3)=49-1^{2}-3^{2}=39
$$

2. Section 15.1: 21

Evaluate the double integral over the given region:

$$
\begin{gathered}
\iint_{R} e^{x-y} d A \\
\text { R: } 0 \leq x \leq \ln 2,0 \leq y \leq \ln 2
\end{gathered}
$$

Solution:

$$
\begin{aligned}
& \int_{0}^{\ln 2} \int_{0}^{\ln 2} e^{x} \cdot e^{-y} d x d y \\
& \int_{0}^{\ln 2} e^{x} d x \int_{0}^{\ln 2} e^{-y} \cdot d y \\
& \left(\left.e^{x}\right|_{0} ^{\ln 2}\right) \cdot\left(-\left.e^{-y}\right|_{0} ^{\ln 2}\right) \\
& (2-1) \cdot\left(-\frac{1}{2}+1\right)=\frac{1}{2}
\end{aligned}
$$

3. SECTION 15.2: 31

Given is an integral over a region in a Cartesian coordinate plane. Sketch the region and evaluate the integral.

$$
\int_{-\pi / 3}^{\pi / 3} \int_{0}^{\sec t} 3 \cos t d u d t
$$

Solution:

Figure 1. Region

$$
\begin{gathered}
\int_{-\pi / 3}^{\pi / 3} \int_{0}^{\sec t} 3 \cos t d u d t \\
\left.3 \int_{-\pi / 3}^{\pi / 3} \cos t\right|_{0} ^{\sec t} d t \\
3 \int_{-\pi / 3}^{\pi / 3} \cos t \cdot \sec t d t \\
3[t]_{-\pi / 3}^{\pi / 3} \\
3\left(\frac{\pi}{3}+\frac{\pi}{3}\right)=2 \pi
\end{gathered}
$$

4. Section 15.3: 1

Sketch the region bounded by the given lines and curves. Then express the region's area as an iterated double integral and evaluate the integral.

The coordinate axes and the line $x+y=2$

Solution:

Figure 2. Region

$$
\begin{gathered}
\int_{0}^{2} \int_{0}^{2-y} 1 d x d y \\
\int_{0}^{2} 2-y d y \\
2 y-\left.\frac{1}{2} y^{2}\right|_{0} ^{2}
\end{gathered}
$$

$$
4-\frac{1}{2}(4)=4-2=2
$$

5. Section 15.4: 11

Change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral.

Solution:

$$
\begin{gathered}
\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y \\
\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} x^{2}+y^{2} d x d y \\
\int_{0}^{\pi / 2} \int_{0}^{2} r^{2} \cdot r d r d \theta \\
\int_{0}^{\pi / 2} 1 d \theta \int_{0}^{2} r^{2} \cdot r d r \\
\left(\frac{\pi}{2}\right) \cdot\left(\left.\frac{1}{4} r^{4}\right|_{0} ^{2}\right) \\
\left(\frac{\pi}{2}\right) \cdot(4)=2 \pi
\end{gathered}
$$

Common Mistakes and feedback:

- Read the directions to make sure you are doing all the parts.
- Show evaluation! Prove you know what you are doing.
- When evaluating iterated integral do not do two separate integrals, evaluate one inside the others.
- Explain your work when needed to get rid of ambiguity.
- Staple your work so you do not lose any papers.
- Label your graphs to correctly define the function's sketch.
- If you submitted your paper online, there was no physical feedback to give, only your grade.
If you believe there were any mistakes, or have questions about how I graded your work, feel free to email me or show up to the LA sessions.

