1) $[10 \mathrm{pts}]$ Choose ONE:
a) State the definition of $f(x, y)$ is differentiable at $P\left(x_{0}, y_{0}\right)$.
b) Show that the graph of $\mathbf{r}(t)=\sin (t) \mathbf{i}+2 \cos (t) \mathbf{j}+\sqrt{3} \sin (t) \mathbf{k}$ is a circle. Find its center and radius. Hint: Show that the curve lies on both a sphere and a plane.
2) $[10 \mathrm{pts}]$ Find the arc length parametrization of the circular helix $\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$ that has reference point $\mathbf{r}(0)=(1,0,0)$ and has the same orientation as the given helix.
3) $[10 \mathrm{pts}]$ Determine whether the limit exists. If so, find its value.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{3 x^{2}+2 y^{2}}
$$

4) [10 pts] Let $f(x, y)=2 x y^{2}, P(1,2)$ and $Q(0.99,2.02)$. Use a total differential to approximate the change in the value of f from P to Q. Simplify completely.
5) [10 pts] Find the curvature $\kappa(t)$ of the curve $x=1-t^{3} y=t-t^{2}$. For full credit, use the formula for $\kappa(t)$ with the cross product (setting $z=0$ if needed).
6) $[10 \mathrm{pts}]$ A point moves along the intersection of the plane $y=3$ with the surface $z=\sqrt{29-x^{2}-y^{2}}$. At what rate is z changing with respect to x when the point is at $(4,3,2)$?
7) [20 pts] Answer T or F. You do not have to justify your answers:

If f_{x} and f_{y} exist at P, then $f(x, y)$ is differentiable at P.
If f_{x} and f_{y} exist at P, then $f(x, y)$ is continuous at P.
If the line $x=3$ is a contour of $f(x, y)$ through $(3,5)$ then $f_{y}(3,5)=0$.
If $f_{x y}$ and $f_{y x}$ exist at P, then they are equal at P.
By definition, the binormal vector is $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$.
For a moving particle, the unit tangent vector and the velocity vector are parallel.
If C is any smooth curve in R^{2}, then both $\mathbf{T}(t)$ and $\mathbf{N}(t)$ exist for all t in the domain.
If $\|\mathbf{r}(t)\|=3$ for all t, then $\mathbf{r}^{\prime}(t) \perp \mathbf{r}^{\prime \prime}(t)$ for all t.
If $\frac{d s}{d t}=3$ for all t, then $\mathbf{r}^{\prime}(t) \perp \mathbf{r}^{\prime \prime}(t)$ for all t.
For a particle moving from time a to time $b,\|\mathbf{r}(b)-\mathbf{r}(a)\| \leq s=$ distance traveled.
8) [10 pts] Let $\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+\mathbf{k}$. Find $\mathbf{T}(t)$ and $\mathbf{N}(t)$ and the equation of the normal plane when $t=\pi / 4$.
9) $[10 \mathrm{pts}]$ Choose ONE:
A) State and prove Theorem 12.6.3, the first part only, the formula for a_{T} that includes \mathbf{v} and a. Include a relevant picture, enough formulas and enough words.
B) An automobile travels at a constant speed around a curve whose radius of curvature is 1000 m . What is the maximum allowable speed if the maximum acceptable value for the normal scalar component of acceleration is $1.6 \mathrm{~m} / s^{2}$?

Remarks and Answers: The average was 68 / 100, with high scores of 94 and 87. The results were a bit low on problems 1,3 and 7 (approx 55%) and a bit high problems 4 and 6 (approx 80%). Here is an advisory scale for the exam:

$$
\begin{aligned}
& \text { A's } 76 \text { to } 100 \\
& \text { B's } 66 \text { to } 75 \\
& \text { C's } 56 \text { to } 65 \\
& \text { D's } 46 \text { to } 55
\end{aligned}
$$

Here is an advisory scale for the semester so far (average your two exam scores and use that):

```
A's 74 to 100
B's 64 to 73
C's 54 to 63
D's 44 to 53
```

1) For 1a) see the text or the lectures (where I abbreviated the numerator as $\Delta f-d f$).

For 1 b), check that $\|\mathbf{r}(\mathbf{t})\|=2$ for all t, which shows the curve lies on a sphere of radius 2 centered at the origin. Also, since $z=\sqrt{3} x$, it lies in a plane through the origin. So, it is a circle (I did not expect more justification than this). The center and radius are the same as for the sphere.
2) Calculate that $\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{5}$ for all t, so $s=\sqrt{5} t$ and $\mathbf{r}=\cos \left(\frac{s}{\sqrt{5}}\right) \mathbf{i}+\sin \left(\frac{s}{\sqrt{5}}\right) \mathbf{j}+\frac{2 s}{\sqrt{5}} \mathbf{k}$.
3) $\mathrm{L}=0$. The best way is polar coordinates, $\lim _{r \rightarrow 0} \frac{r^{3} \cos ^{2} \theta \sin \theta}{r^{2}\left(3 \cos ^{2} \theta+2 \sin ^{2} \theta\right)}=0$. The important part is $\lim _{r \rightarrow 0} \frac{r^{3}}{r^{2}}=0$.
4) The question is to compute $d f=f_{x} d x+f_{y} d y=2 y^{2}(-0.01)+4 x y(0.02)=0.08-0.16=$ -0.08 .

Note that $d x=\Delta=x-x_{0}=0.99-1.00$ and not the other way around. In general, x_{0} will be the simpler number (1.00), and the phrase 'from P to Q ' also indicates how to do the subtraction.
5) $\kappa=\frac{\left\|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right\|}{\left\|\mathbf{r}^{\prime}\right\| \|^{3}}=\frac{\left|6 t-6 t^{2}\right|}{\left(9 t^{4}+4 t^{2}-4 t+1\right)^{3 / 2}}$.

Most people remembered the formula correctly, but then there were very many calculation errors. Get $\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}=\left(6 t-6 t^{2}\right) \mathbf{k}$ (most people got this, but not the easier next step), so $\left\|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right\|=\left|6 t-6 t^{2}\right|\|\mathbf{k}\|=\left|6 t-6 t^{2}\right|$. Likewise, $\left\|\mathbf{r}^{\prime}\right\|=\sqrt{\left(-3 t^{2}\right)^{2}+(1-2 t)^{2}}$ etc should be easy.
6) -2 .
7) FFTFT TFFTT. The 7th one is maybe a little tricky, but \mathbf{N} can fail to exist. Consider a straight line, for example.
8) Get $\mathbf{T}=\langle-\sin (t), \cos (t), 0\rangle=\langle-\sqrt{1 / 2}, \sqrt{1 / 2}, 0\rangle$ and $\mathbf{N}=\langle-\cos (t),-\sin (t), 0\rangle=$ $\langle-\sqrt{1 / 2},+\sqrt{1 / 2}, 0\rangle$ fairly easily, since $t=s=\operatorname{arc}$ length. For the normal plane (which contains the normal and binormal vectors), let $\mathbf{n}=\mathbf{T}$ and get

$$
-\sqrt{1 / 2}(x-\sqrt{1 / 2})+\sqrt{1 / 2}(y-\sqrt{1 / 2})=0
$$

This simplifies to $x=y$, but I did not require that last step.
9a) See the text or lectures. The most common problem was with the step $a_{T}=\|\mathbf{a}\| \cos \theta$. This is correct, but it makes no sense without a picture, and/or a good explanation.
$9 \mathrm{~b})$ Recall that $a_{N}=(d s / d t)^{2} \kappa$. So, $(d s / d t)^{2} \kappa \leq 1.6$ and $\kappa=1 / 1000$, so speed $=d s / d t \leq$ $\sqrt{1600}=40 \mathrm{~m} / \mathrm{s}$.

