1) Find the directional derivative of $f(x, y)=y^{2} \ln x$ at $P(1,4)$ in the direction of $\mathbf{a}=$ $-3 \mathbf{i}+3 \mathbf{j}$.
2) Find parametric equations for the normal line to the surface $x^{2} y-4 z^{2}=-7$ at $P(-3,1,-2)$.
3) Find parametric equations for the surface $z=e^{-x^{2}-y^{2}}$ in terms of r and θ (as defined in cylindrical coordinates).
4) Let G be the solid inside the sphere $x^{2}+y^{2}+z^{2}=9$ but outside the cylinder $x^{2}+y^{2}=1$. Express the volume of G as a double integral in polar coordinates. You do not have to evaluate it.
5) [15pts] Evaluate this integral by reversing the order of integration. Include a picture of the region R.

$$
\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y
$$

6) $[15 \mathrm{pts}]$ At what point(s) on the circle $x^{2}+y^{2}=1$ does the function $f(x, y)=x y$ have an absolute maximum value and what is that max ? Hint: I'd suggest the Lagrange method, but a parametrization should also work.
7) Let $w=5 x^{2} y^{3} z^{4}, x=t^{2}, y=t^{3}$ and $z=t^{5}$. Compute $d w / d t$ using a relevant version of the Chain Rule from Ch. 13.5. Write out the formula, use it, and for maximum credit simplify your answer.
8) [20pts] True-False. Assume f, f_{x} etc are differentiable on R^{n} (usually this is R^{2}).

The surface area of the paraboloid $z=x^{2}+y^{2}$ below $z=1$ is $\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4 r^{2}+1} r d r d \theta$.
The function $f(x, y)=y^{3}$ has an absolute maximum value on the region $x^{2}+y^{2}<4$.
If $y=x^{2}$ is a level curve of $f(x, y)$ then $f_{x}(0,0)=0$.
If $f(x, y)$ is continuous on a closed rectangle R, then f has a maximum value on R.
In a Lagrange multiplier problem, the main goal is to compute λ as soon as possible.
If $\nabla f=\langle 3,4\rangle$ at P and \mathbf{u} is any unit vector, then $D_{\mathbf{u}} f(P) \leq 5$.
$\int_{0}^{1} \int_{0}^{2-2 z} \int_{0}^{2} x+y+z d x d y d z=\int_{0}^{2} \int_{0}^{2} \int_{0}^{1-y / 2} x+y+z d z d x d y$.
$\int_{0}^{1} \int_{0}^{2-2 z} \int_{0}^{2} x+y+z d x d y d z=\int_{0}^{2} \int_{0}^{1} \int_{0}^{1-z} x+y+z d y d z d x$.
If $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}<0$ at a critical point P, then f has a relative extremum at P.
Fubini's Theorem is mainly used to solve optimization problems.

Bonus) [about 5 points] State Thm.13.7.2 about the equation of the tangent plane to $z=f(x, y)$ at a point $P\left(x_{0}, y_{0}\right)$, and prove it using a level surface (as done in the book).

Remarks and Answers: The average was 86 out of 100, with top scores of 104 and 103, which is excellent. The overall results were good (at least 75%) on every problem. Here is an advisory scale for Exam 3:

A's 90 to 100
B's 80 to 89
C's 70 to 79
D's 60 to 69
Here is a scale for the average of your 3 exam scores so far.

> A's 76 to 100
> B's 66 to 75
> C's 56 to 65
> D's 46 to 55

1) $\nabla f \cdot \mathbf{u}=\langle 16,0\rangle \cdot\langle-1 / \sqrt{2}, 1 / \sqrt{2}\rangle=-16 / \sqrt{2}$, or $-8 \sqrt{2}$. Don't forget to normalize \mathbf{a} and that $\ln (1)=0$.
2) $x=-3-6 t, y=1+9 t, z=-2+16 t$. This uses $\mathbf{n}=\nabla f(-3,1,-2)=\langle-6,9,16\rangle$.
3) $x=r \cos \theta, y=r \sin \theta$ and $z=e^{-r^{2}}$.
4) $2 \int_{0}^{2 \pi} \int_{1}^{3} \sqrt{9-r^{2}} r d r d \theta$. Without the initial 2, we only get the top half. It is also OK to use more symmetry and get (for example) $8 \int_{0}^{\pi / 2} \int_{1}^{3} \sqrt{9-r^{2}} r d r d \theta$.
5) $e-1$. We did this in class and I think it is also in the text.
6) $\operatorname{Max}=1 / 2$ at both $(x, y)=(\sqrt{1 / 2}, \sqrt{1 / 2})$ and $(-\sqrt{1 / 2},-\sqrt{1 / 2})$. Most people used Lagrange (with $y=2 \lambda x, x=2 \lambda y$, etc). An alternative is $f=r^{2} \sin \theta \cos \theta=(1 / 2) \sin 2 \theta$, with $f^{\prime}=0$ at $\theta=0, \pi / 2, \ldots$.
7) $d w / d t=w_{x} d x / d t+w_{y} d y / d t+w_{z} d z / d t=\cdots=165 t^{32}$.
8) TFTTF TTFFF
B) See the text. Mention (in words!) that the gradient is orthogonal to the tangent plane and serves as the normal vector \mathbf{n} of Ch.11.
