The problems are 10 points each unless labeled otherwise.

1) Write an iterated integral for $\iint_{R} d A$, where R is bounded by $y=3-2 x, y=x$ and $x=0$. You don't have to evaluate it.
2) Use a double integral to find the area enclosed by $r=2+\cos \theta$. For partial credit you can use Calc 2 methods instead.
3) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$ by converting to polar coordinates.
4) Find the mass of the solid G. It is bounded by $0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq y$ with density $\delta(x, y, z)=x$.
5) Evaluate $\iiint_{E}|x y z| d V$, where E is the ellipsoid $x^{2}+(y / 2)^{2}+(z / 3)^{2} \leq 1$. Hint: Let $x=u, y=2 v$ and $z=3 w$. Then integrate over a region in $u v w$ space, including a Jacobian.
6) Evaluate the line integral $\int_{C} y d x+z d y-x d z$ along the curve $x=t, y=t^{2}$, $z=t^{3}$ from $(0,0,0)$ to $(1,1,1)$.
7) Let $\mathbf{F}(x, y)=\left\langle 6 x y, 3 x^{2}\right\rangle$. Show that this is a conservative vector field. Find a potential function f for it.
8) [5 pts] Suppose $f(x, y, z)=x^{2}+y z$ and $\mathbf{F}=\nabla f$. Let C be the curve $\mathbf{r}(t)=$ $\left\langle\sin (\pi t), \cos ^{2}(\pi t), t+1\right\rangle$ for $0 \leq t \leq 2$. Find the work done by \mathbf{F} on C. This is meant to be fairly quick and easy.
9) $[15 \mathrm{pts}]$ True-False

If S lies in the first octant of R^{3} then the centroid of S must also lie in the first octant.
The centroid of the region in R^{2} bounded by $r=1+\cos \theta$ lies on the y-axis.
The average value of $f(x, y)=x y^{2}$ over $0 \leq x \leq 1,-1 \leq y \leq 1$, is zero.
$\int_{0}^{1} \int_{0}^{1} \int_{0}^{z} d x d y d z=\int_{0}^{1} \int_{0}^{1} \int_{0}^{x} d z d y d x$
$\int_{0}^{\pi} \int_{0}^{\pi / 2} \int_{0}^{1} \rho d \rho d \theta d \phi=2 \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho d \rho d \theta d \phi$
10) Choose ONE to prove:
a) State and prove Eqn (3) of Ch.14.6, page 855 , which is the equation of the tangent plane to the graph of $z=f(x, y)$ at a point P_{0} on the graph. You can use Eqn (1) of Ch.14.6, which is the equation of the tangent plane to a level surface $F(x, y, z)=c$ at a point P_{0} on it.
b) Explain the $r d r d \theta$ appearing in polar integrals coming from rectangular ones. Use pictures and geometric formulas rather than a determinant.

Remarks: The average was 61 without many extremely high or low scores. The top 2 were 78 and 75 . The average score on most problems was good, but not problems 5, 7 and 8 (25% combined average). The scale for your current semester average is about the same as the scale on the Exam 2 Key (A's starting at 71, etc). The scale for Exam 3 is similar, but 2 points lower (A's starting at 69 , etc). I expect the final semester scale will also be similar, assuming normal results on the final exam and the HW.

1) $\int_{0}^{1} \int_{x}^{3-2 x} d y d x$. Draw a picture. R is the triangle beside the y-axis.
2) Draw a picture. The region looks like a deformed circle centered near the origin. $\int_{0}^{2 \pi} \int_{0}^{2+\cos \theta} r d r d \theta=\cdots=\frac{9 \pi}{2}$.
3) Draw a picture. It is a quarter-circle. $\int_{0}^{\pi / 2} \int_{0}^{1} r^{2} r d r d \theta=\pi / 8$.
4) 1
5) 6. Very few people did all aspects of this one correctly. You will integrate over the sphere $u^{2}+v^{2}+w^{2} \leq 1$, which is much easier in spherical coordinates ($\rho \leq 1$). This is the main reason to do a substitution here. But restrict to the 1st octant (using symmetry) in order to remove the absolute values. Get $J=6$. Replace the $x y z$ below by $6 u v w$ and u by $\rho \sin \phi \cos \theta$, etc. This is 15.8 .19 . We did it in class (I think).

$$
8 \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} x y z 6 \rho^{2} \sin \phi d \rho d \phi d \theta=\cdots=6
$$

6) $-1 / 60 . \int_{C} y d x=\int_{0}^{1}\left(t^{2}\right)(1) d t=1 / 3$, etc. $\quad 1 / 3+2 / 5-3 / 4=-1 / 60$.
7) It is conservative because $M_{y}=N_{x}=6 x$. The potential is $f=3 x^{2} y$ (but include some work such as $\int M d x=3 x^{2} y+C(y)$, etc $)$.
8) The simple FTLI answer is $\left.f\right|_{A} ^{B}$, with $A=\mathbf{r}(0)=\langle 0,1,1\rangle$, and $B=\mathbf{r}(2)=\langle 0,1,3\rangle$. So, $3-1=2$.
9) TFFTT
10) See the text or lectures.
