MAC 2313 Final Exam Key Dec 11, 2017 Prof. S. Hudson

These are 10 points each unless noted.

1) Let $\mathbf{F} = \langle x^2 - 3z, e^y, y^2 - z \rangle$. Compute div \mathbf{F} and curl \mathbf{F} .

2) Express this integral as an equivalent integral with the order of integration reversed, $\int_0^4 \int_{\sqrt{x}}^2 f(x,y) \, dy \, dx$. You do not have to evaluate the integral.

3) Find a unit vector in the direction in which f increases most rapidly at P, and find the rate of change of f at P in that direction; $f(x, y) = \cos(x - 2y)$; $P(2\pi/3, \pi/4)$.

4) Find the absolute maximum and minimum values of $f(x, y) = 4x^3 + y^2$ on the domain $2x^2 + y^2 = 1$, and where they occur. Label your final answers clearly. Small hints: 1) the min value is negative and 2) this is meant to be mainly a Lagrange problem.

5) Let σ be the surface of the solid box bounded by the coordinate planes and x = 3, y = 2 and z = 3, with outward orientation. Use the Divergence theorem to compute the flux across σ of

$$\mathbf{F} = \langle x^2 + y^2, e^x, y^3 - 2z \rangle$$

6) Use a Jacobian and a change variables to evaluate $\int \int_R \frac{x-y}{x+y} dA$, where R is bounded by x - y = 0, x - y = 2, x + y = 1 and x + y = 5.

7) Let σ be the part of the surface $x^2 + y^2 + z^2 = 4$ above z = 1. Compute $\int \int_{\sigma} (x^2 + y^2) z \, dS$ and simplify.

8) [20pts] True-False:

Stoke's Thm is a standard method for computing the work done on a particle moving on a simple closed curve.

Lagrange multipliers are used to solve optimization problems.

The flux of an inverse-square field across the surface of any cube in \mathbb{R}^3 is zero.

 $\mathbf{F}(x,y) = \langle y^2, 2xy \rangle$ is conservative on \mathbb{R}^2 .

The Laplace operator is often written as $\nabla \cdot \nabla$.

Curl **F** is often written as $\nabla \cdot \mathbf{F}$.

Div (curl \mathbf{F}) = 0.

The set in R^2 where |x| + |y| > 1 is simply-connected.

If **F** is a vector field and $\nabla \phi = \mathbf{F}$, then ϕ is a potential function for **F**.

If $\mathbf{r}(s)$ is parametrized by arc length, then $\kappa = ||\mathbf{r}'||$.

9) Choose ONE proof.

a) State and prove the formula in Thm.11.3.3 that relates the dot product of two vectors to the angle θ between them.

b) State and prove Thm.13.6.6, about the direction of a normal vector to a level curve of f(x, y). You may include a picture, but also explain the ideas with words and short calculations.

Remarks and Answers: The average among the top 23 was approx 71, with high scores of 98 and 89. This is a good result. The grades were similar on all questions, but lower on 4) and 7) (approx 48%). I do not set a separate scale for the final, but will scale the combined grades asap.

1) Div $\mathbf{F} = 2x + e^y - 1$. Curl $\mathbf{F} = \langle 2y, -3, 0 \rangle$.

- 2) $\int_0^2 \int_0^{y^2} f(x,y) \, dy \, dx$. As usual, a picture is strongly advised.
- 3) The direction is $\mathbf{u} = 5^{-1/2} \langle -1, 2 \rangle$ (normalize ∇f). The rate is $||\nabla f|| = \sqrt{5}/2$.

For full credit, you need to identify this answer as 'the rate' or perhaps as $D_{\mathbf{u}}f(P)$, etc, not just as $||\nabla f||$, which is part of the previous calculation. It is a good habit to circle and label your final answers, though I do not usually require that.

4) The max is $\sqrt{2}$ at $(\sqrt{1/2}, 0)$. The min is $-\sqrt{2}$ at $(-\sqrt{1/2}, 0)$. It is fairly easy to miss the possibility that y = 0, and deduce incorrectly that the min is positive, hence the hint.

I gave partial credit for finding the other critical points, which you should find anyway, of course. Namely, $(1/3, \pm \sqrt{7/9})$ and $(0, \pm 1)$, but these are not the extrema.

I actually meant for the domain to be $2x^2 + y^2 \leq 1$ (two-dimensional) but then the answer would be the same. The interior critical point (0,0) is not an extrema.

5) Integrate div $\mathbf{F} = 2x - 2$ to get $\Phi = 18$.

6) $\int_{1}^{5} \int_{0}^{2} (u/v)(1/2) \, du \, dv = \ln(5).$

7) 9π . Start using dxdy with the term $z\sqrt{1+f_x^2+f_y^2}$ eventually simplifying to 2. Then switch to $rdrd\theta$, with a fairly easy integral. It should also be possible to start by parametrizing the surface but it seems harder that way.

8) TTFTT FTFTF

9) Most people chose to prove $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$ and did OK. Many people lost a few points for lack of explanation. I'd expect most of these in a good proof:

* State the theorem first and explain what θ is.

* Draw a picture, the triangle spanned by \mathbf{u} and \mathbf{v} .

* Mention the Law of Cosines near the start.

* Explain briefly the calculations, perhaps noting that $||\mathbf{u}||^2 = \mathbf{u} \cdot \mathbf{u}$ and/or that $\mathbf{v} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{v}$.

