These are 10 points each unless noted.

1) Let $\mathbf{F}=\left\langle x^{2}-3 z, e^{y}, y^{2}-z\right\rangle$. Compute $\operatorname{div} \mathbf{F}$ and $\operatorname{curl} \mathbf{F}$.
2) Express this integral as an equivalent integral with the order of integration reversed, $\int_{0}^{4} \int_{\sqrt{x}}^{2} f(x, y) d y d x$. You do not have to evaluate the integral.
3) Find a unit vector in the direction in which f increases most rapidly at P, and find the rate of change of f at P in that direction; $f(x, y)=\cos (x-2 y) ; P(2 \pi / 3, \pi / 4)$.
4) Find the absolute maximum and minimum values of $f(x, y)=4 x^{3}+y^{2}$ on the domain $2 x^{2}+y^{2}=1$, and where they occur. Label your final answers clearly. Small hints: 1) the min value is negative and 2) this is meant to be mainly a Lagrange problem.
5) Let σ be the surface of the solid box bounded by the coordinate planes and $x=3, y=2$ and $z=3$, with outward orientation. Use the Divergence theorem to compute the flux across σ of

$$
\mathbf{F}=\left\langle x^{2}+y^{2}, e^{x}, y^{3}-2 z\right\rangle
$$

6) Use a Jacobian and a change variables to evaluate $\iint_{R} \frac{x-y}{x+y} d A$, where R is bounded by $x-y=0, x-y=2, x+y=1$ and $x+y=5$.
7) Let σ be the part of the surface $x^{2}+y^{2}+z^{2}=4$ above $z=1$. Compute $\iint_{\sigma}\left(x^{2}+y^{2}\right) z d S$ and simplify.
8) [20pts] True-False:

Stoke's Thm is a standard method for computing the work done on a particle moving on a simple closed curve.

Lagrange multipliers are used to solve optimization problems.
The flux of an inverse-square field across the surface of any cube in R^{3} is zero.
$\mathbf{F}(x, y)=\left\langle y^{2}, 2 x y\right\rangle$ is conservative on R^{2}.
The Laplace operator is often written as $\nabla \cdot \nabla$.
$\operatorname{Curl} \mathbf{F}$ is often written as $\nabla \cdot \mathbf{F}$.
$\operatorname{Div}(\operatorname{curl} \mathbf{F})=0$.
The set in R^{2} where $|x|+|y|>1$ is simply-connected.
If \mathbf{F} is a vector field and $\nabla \phi=\mathbf{F}$, then ϕ is a potential function for \mathbf{F}.
If $\mathbf{r}(s)$ is parametrized by arc length, then $\kappa=\left\|\mathbf{r}^{\prime}\right\|$.
9) Choose ONE proof.
a) State and prove the formula in Thm.11.3.3 that relates the dot product of two vectors to the angle θ between them.
b) State and prove Thm.13.6.6, about the direction of a normal vector to a level curve of $f(x, y)$. You may include a picture, but also explain the ideas with words and short calculations.

Remarks and Answers: The average among the top 23 was approx 71, with high scores of 98 and 89. This is a good result. The grades were similar on all questions, but lower on 4) and 7) (approx 48\%). I do not set a separate scale for the final, but will scale the combined grades asap.

1) $\operatorname{Div} \mathbf{F}=2 x+e^{y}-1$. Curl $\mathbf{F}=\langle 2 y,-3,0\rangle$.
2) $\int_{0}^{2} \int_{0}^{y^{2}} f(x, y) d y d x$. As usual, a picture is strongly advised.
3) The direction is $\mathbf{u}=5^{-1 / 2}\langle-1,2\rangle$ (normalize ∇f). The rate is $\|\nabla f\|=\sqrt{5} / 2$.

For full credit, you need to identify this answer as 'the rate' or perhaps as $D_{\mathbf{u}} f(P)$, etc, not just as $\|\nabla f\|$, which is part of the previous calculation. It is a good habit to circle and label your final answers, though I do not usually require that.
4) The max is $\sqrt{2}$ at $(\sqrt{1 / 2}, 0)$. The \min is $-\sqrt{2}$ at $(-\sqrt{1 / 2}, 0)$. It is fairly easy to miss the possibility that $y=0$, and deduce incorrectly that the min is positive, hence the hint.

I gave partial credit for finding the other critical points, which you should find anyway, of course. Namely, $(1 / 3, \pm \sqrt{7 / 9})$ and $(0, \pm 1)$, but these are not the extrema.

I actually meant for the domain to be $2 x^{2}+y^{2} \leq 1$ (two-dimensional) but then the answer would be the same. The interior critical point $(0,0)$ is not an extrema.
5) Integrate $\operatorname{div} \mathbf{F}=2 x-2$ to get $\Phi=18$.
6) $\int_{1}^{5} \int_{0}^{2}(u / v)(1 / 2) d u d v=\ln (5)$.
7) 9π. Start using $d x d y$ with the term $z \sqrt{1+f_{x}^{2}+f_{y}^{2}}$ eventually simplifying to 2 . Then switch to $r d r d \theta$, with a fairly easy integral. It should also be possible to start by parametrizing the surface but it seems harder that way.

8) TTFTT FTFTF

9) Most people chose to prove $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$ and did OK. Many people lost a few points for lack of explanation. I'd expect most of these in a good proof:

* State the theorem first and explain what θ is.
* Draw a picture, the triangle spanned by \mathbf{u} and \mathbf{v}.
* Mention the Law of Cosines near the start.
* Explain briefly the calculations, perhaps noting that $\|\mathbf{u}\|^{2}=\mathbf{u} \cdot \mathbf{u}$ and/or that $\mathbf{v} \cdot \mathbf{u}=\mathbf{u} \cdot \mathbf{v}$.

