1) Find all critical points of the function $f(x, y)=x y-x^{3}-y^{2}$. Classify the critical points as either relative maxima, relative minima or saddle point.
2) [7 pts each] 2a) Let L be the line defined by the parametric equations $x=1-2 t, y=$ $2-3 t, z=3+t$. Let P be the plane defined by $3 x+2 y+z=0$. Show that L and P are NOT perpendicular to each other.
b) Find an equation for the plane Q that both contains L and is perpendicular to P.
3) [7 points] Find the normal scalar component of acceleration when $t=1$, given that $\mathbf{a}(1)=\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$ and $a_{T}(1)=1$.
4) [7 points] Find the distance from the point $P(1,1) \in R^{2}$ to the line $y=3 x+1$. Hint: find a normal vector to the line, and then a projection.
5) Evaluate the surface integral $\iint_{\sigma} z^{2} d S$, where σ is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ between $z=1$ and $z=2$.

In problems 6 and 7 , let G be the solid bounded above by the sphere $\rho \leq 4$ and below by the cone $\phi=\pi / 3$.
6) [7 points] Use spherical coordinates to find the volume of G.
7) [7 points] Express $\iiint_{G} x^{2}+y^{2} d V$ as an iterated integral in cylindrical coordinates. You do not have to compute it.
8) [18 pts] True - False:

If \mathbf{F} is an inverse-square field on a solid $G \subset R^{3}$, then the flux across the boundary is 0 .
If D is an open set in R^{2} then every point of D is an interior point of D.
The Stoke's Theorem equates a triple integral with a surface integral.
If $f_{y}=g_{x}$ on R, an annulus in R^{2}, then $\mathbf{F}=\langle f, g\rangle$ is a conservative vector field on R.
If $f(x, y)$ is continuous on the disk $x^{2}+y^{2} \leq 1$, and is not constant, then it has a maximum value on the disk.

The Jacobian of the transformation $u=x+5 y, v=5 x-y$, is a constant.
9) Use the Divergence theorem to compute the flux of \mathbf{F} across σ with outward orientation, given that σ is the surface of the solid box bounded by the coordinate planes and $x=4$, $y=3$ and $z=2$, and

$$
\mathbf{F}=\left\langle x^{2}+y, z^{2}, e^{y}-z\right\rangle
$$

10) Choose ONE proof:
a) [Thm 13.6.6] ∇f at P is normal to the level curve of f through P. You can give a careful explanation, as in the text, rather than a formal proof.
b) State and prove the formulas for a_{N} and a_{T} in Thm.12.6.3, which are given in terms of \mathbf{v} and \mathbf{a}. You may include a picture, but also explain the ideas in words.

Remarks and Answers: The average was $60 / 100$, with the 4 highest scores approx 83. The lowest scores were on problems $2 \mathrm{~b}, 3,4$ and 7 (averaging approx 36%) and the best were on problems 5 and 6 (averaging approx 83%). Most people did better on the more recent material than on the review problems. As usual, I do not directly scale the final exam, and have not yet curved the semester grades.

1) Set $0=\nabla f(x, y)=\left\langle y-3 x^{2}, x-2 y\right\rangle$ to get critical pts $(0,0)$ and $(1 / 6,1 / 12)$. Using D, the first is a saddle point and the other is a rel. max.

2a) The direction of the line is $\mathbf{v}=\langle-2,-3,1\rangle$. A normal vector to the plane is $\mathbf{n}=\langle 3,2,1\rangle$. They are not perpendicular, because their dot product is not zero.

Many people confused perpendicular with parallel, possibly because we did a similar review problem with 'not parallel'. This was an unfortunate coincidence, so I graded gently for this kind of mistake. To show they are not parallel we could check they are not scalar multiples of each other, or compute the cross product.
2b) A normal vector to the new plane is $\mathbf{v} \times \mathbf{n}=\langle-5,5,5\rangle$, so

$$
-5(x-1)+5(y-2)+5(z-3)=0
$$

3) $\sqrt{8}$. See Exam 2 problem 6 .
4) $\frac{3}{\sqrt{10}}$. See Exam 1 problem 3 .
5) Using x, y as parameters, get $d S=\sqrt{2} d A$ and then replace $d A$ by $r d r d \theta, z^{2}$ by r^{2} to get

$$
A=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r^{3} d r d \theta=\frac{15 \pi \sqrt{2}}{2}
$$

6) $\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{4} \rho^{2} \sin \phi d \rho d \phi d \theta=64 \pi / 3$.
7) $\int_{0}^{2 \pi} \int_{0}^{2 \sqrt{3}} \int_{\frac{r}{\sqrt{3}}}^{\sqrt{16-r^{2}}} r^{3} d z d r d \theta$. See Ch14 Review, problem 23 . To find the limits, draw a picture and find (from trig) that $(2 \sqrt{3}, 0,2)$ lies on the intersection of the sphere and the cone. And that $r=x, z=r / \sqrt{3}=\sqrt{16-r^{2}}$ there.
8) FTFFTT
9) $\Phi=\iiint_{G} 2 x-1 d V=72$.
10) See the text.
