1) Let $\mathbf{u}=\langle 0,3,4\rangle$ and $\mathbf{v}=\langle 10,11,-2\rangle$. Compute $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and simplify.
2) Suppose $d \mathbf{r} / d t=-t \mathbf{i}-t \mathbf{j}-t \mathbf{k}$ and $\mathbf{r}(0)=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. Compute $\mathbf{r}(t)$.
3) Find the equation of the tangent plane to the surface $2 z-x^{2}=0$ at the point $(2,0,2)$.
4) [8 pts$]$ Find the area enclosed by the lemniscate $r^{2}=4 \cos 2 \theta$. This curve is a "sideways $8 \prime$. The two tangent lines at $(0,0)$ are $\theta= \pm \pi / 4$.
5) [7 pts] Evaluate $\int_{C} y d x$ where C is the ellipse $4 x^{2}+9 y^{2}=36$ oriented CCW.
6) Let $\mathbf{F}=\left\langle 4 x e^{z}, \cos (y), 2 x^{2} e^{z}\right\rangle$. 6a) Compute curl \mathbf{F} and simplify.
$6 b)$ Is \mathbf{F} conservative ? Show work or reasoning.
7a) Find a potential function for the vector field $\mathbf{F}=\langle\cos (y),-x \sin (y)+2 y\rangle$.
$7 \mathrm{~b})$ Compute $\int_{(0,0)}^{(1, \pi)} \mathbf{F} \cdot d \mathbf{r}$.
7) Let S be the surface of the solid bounded by $z=1-x^{2}-y^{2}$ and the $x y$-plane. Compute the outwards flux of $\mathbf{F}=\left\langle 2 x^{3}+y^{3}, y^{3}+z^{3}, 3 y^{2} z\right\rangle$ across S.
8) [15 points] Answer T or F; you do not have to explain. Assume $f(x, y)$ is a differentiable function defined on the entire plane.

If S is a triangle with density $\delta(x, y)=x^{2}+y^{4}$, its center of mass must lie in S.
If (a, b) is a local minimum of f, then $D=f_{x x} f_{y y}-f_{x y}^{2}>0$ at (a, b).
The function $f(x, y)$ must have an absolute maximum in the region $x^{2}<y$.
If $\operatorname{div} \mathbf{F}>0$ on a cube D in R^{3}, then $\Phi \geq 0$ (outwards flux across the boundary).
If $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist, then f is continuous at $(0,0)$.
10) Circle ONE to do. If you use the back of the page, leave a note here.
a) State and prove Thm.14.5.9 which relates $D_{u} f$ to ∇f.
b) State and prove the formula in Ch 14.5 that relates ∇f to a level curve of f.
c) State and prove "Green's Lemma" (about $\int_{C} f d y=\iint_{R} f_{x} d A$).

Remarks and Answers: The average was approx 54 / 100, with high scores of 73 and 71. I don't think this will change the previous scale much, but I have not included the HW scores yet. The best results were on problem $2(88 \%)$ and the worst were on 5,7 and 8 (30% to 35%).

1) $\frac{1}{9} \mathbf{v}$.
2) $\mathbf{r}(t)=\left\langle 1-t^{2} / 2,2-t^{2} / 2,3-t^{2} / 2\right\rangle$.
3) Using the level surface method, $\mathbf{n}=\langle-2 x, 0,2\rangle=\langle-4,0,2\rangle$. After simplifying, get $2 x-z=2$.
4) You can use Calc II methods, but I expected Calc III ones (see 15.4 Ex2). By symmetry, you can study the part in the first quadrant and multiply by 4 :

$$
A=4 \int_{0}^{\pi / 4} \int_{0}^{\sqrt{4 \cos 2 \theta}} r d r d \theta=8 \int_{0}^{\pi / 4} \cos 2 \theta d \theta=4
$$

A few people replaced the $r d r$ by $\sqrt{4 \cos 2 \theta} d r$ but the relation $r=\sqrt{4 \cos 2 \theta}$ is only true on the boundary of the region. Formulas like this affect the limits of integration but not the original integrand.
5) Use Green's thm with $f(x, y)=y$ (or $\mathrm{M}=\mathrm{f}=\mathrm{y}$ and $\mathrm{N}=0$), so $\int_{C} y d x=-\iint_{R} d A=-$ area of the ellipse $-\pi a b=-6 \pi$. Note that $\pi a b$ replaces πr^{2} and you can get a by setting $x=0$, etc.

6a) $\operatorname{curl} \mathbf{F}=\mathbf{0}$
6a) Yes. Check the usual three equations, for example $M_{y}=N_{x}$ checks because $0=0$, etc. Ideally you should also mention that the domain $\left(R^{3}\right)$ is simply-connected.

7a) $f=x \cos (y)+y^{2}+K$. The K is optional.
7b) Using 7a and "the FTC", $f(1, \pi)-f(0,0)=\pi^{2}-1$.
8) Use the Divergence Thm to replace the surface integral by an easier triple integral:

$$
\Phi=\iiint \operatorname{div} \mathbf{F} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} 6 r^{2} d z r d r d \theta=\cdots=\pi
$$

9) TFFTF
10) See the text or lectures.
