1) [7 pts] Let $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, \sqrt{5} t\rangle$ for $0 \leq t \leq 2 \pi$. Find the arc length of this curve.
2) [7 pts$]$ Find the equation of the plane through $(1,5,-1)$ that is perpendicular to the line of intersection of the planes $x+2 z=2$ and $x+3 y-z=-3$.
3) Find all critical points of the function $f(x, y)=6 x^{2}-2 x^{3}+3 y^{2}+6 x y$. Classify the critical points as either relative maxima, relative minima or saddle point.
4) Find the work done by $\mathbf{F}=x y \mathbf{i}+y \mathbf{j}-y z \mathbf{k}$ over the curve $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}$, for $0 \leq t \leq 1$, in the direction of increasing t.
5) Integrate $G(x, y, z)=x^{2}$ over the unit sphere $x^{2}+y^{2}+z^{2}=1$.
6) Let $\mathbf{F}(x, y, z)=(x-y) \mathbf{i}+(y-z) \mathbf{j}+(z-x) \mathbf{k}$. Let C be the boundary of σ, going CCW when viewed from above, where σ is the portion of the plane $x+y+z=1$ in the first octant. Use Stoke's theorem to evaluate $W=\int_{C} \mathbf{F} \cdot \mathbf{T} d s$.
7) [20pts] Answer True or False, you do not have to explain.

It is possible for two vectors in R^{3} that $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u} \times \mathbf{v}\|$.
The quadratic surface $z=x^{2}-y^{2}$ has a saddle point.
For all angles $x>0, \sin ^{2} x=\frac{1+\cos 2 x}{2}$.
In $R^{3}, \operatorname{proj}_{\mathbf{j}}(\mathbf{i}+\mathbf{k})=\mathbf{0}$.
If f is continuous on R^{2}, then $\int_{0}^{4} \int_{0}^{3} f(x, y) d y d x=\int_{0}^{4} \int_{0}^{3} f(z, x) d x d z$.
If D is a bounded solid contained in the first octant of R^{3}, then the centroid of D lies in D.

If D is an closed set in R^{2} then every boundary point of D is in D.
If R is any rectangle or disk in R^{2} then $\iint_{R}\left(4-x^{2}-y^{2}\right) d A \leq 4 \pi$.
For a particle moving in the $x y$-plane in R^{3}, the acceleration vector $\mathbf{a}(t)$ and the normal vector $\mathbf{N}(t)$ are orthogonal.

If f_{x} and f_{y} exist and are continuous, then $f(x, y)$ is differentiable.
8) $[8 \mathrm{pts}]$ Evaluate

$$
\int_{0}^{4} \int_{y / 2}^{(y / 2)+1} \frac{2 x-y}{2} d x d y
$$

using this transformation (a $u v$ substitution)

$$
u=\frac{2 x-y}{2}, \quad v=\frac{y}{2}
$$

and integrating over a region G in the $u v$-plane. Helpful remarks; $x=u+v$ and $y=2 v$. You can compute J. If $x=(y / 2)+1$, then $u=1$ (typo corrected, $12 \mathrm{pm}, 12 / 8 / 20$) which gives one boundary line of G.
9) Find the average value of $f(x, y)=x \cos (x y)$ over the rectangle R where $0 \leq x \leq \pi$ and $0 \leq y \leq 1$.
10) [8 pts$]$ Choose ONE, circle it and do it.
a) State and prove Thm 1 of Ch 12.3 , a formula for the dot product. Be sure to explain θ and to justify the main steps of the proof.
b) State and prove the simple form of Green's Thm on a rectangle. You can give the textbook proof, or the one from my lecture.

Bonus) [5 pts] Find the centroid of the infinite region (the unbounded region) in the second quadrant enclosed by the coordinate axes and the curve $y=e^{x}$. Handle the improper integrals correctly using limits.

Remarks, Answers: The average was 52 / 100 with high scores of 81 and 76. The results were rather weak on problems $2,5,6$ and 9 (approx 40%). This might bring the semester scale down a bit, but I expect the HW scores will bring it back to roughly the semester scale on the Exam III Key.

1) $L=\int_{0}^{2 \pi}\left(4 \sin ^{2} t+4 \cos ^{2} t+5\right)^{1 / 2} d t=6 \pi$.
2) $-6(x-1)+3(y-5)+3(z+1)=0$. Get the normal vector by taking a cross-product, $\mathbf{n}=\langle 1,0,2\rangle \times\langle 1,3,-1\rangle=\langle-6,3,3\rangle$.
3) Set $0=f_{x}=12 x-6 x^{2}+6 y$ and $0=f_{y}=6 y+6 x$ (so $y=-x$). Solve to get two stationary points, $x=0, y=0$ and $x=1, y=-1$. Using D we see that $(0,0)$ is a local \min and $(1,-1)$ is a saddle point (see 14.7.15).
4) $\mathbf{F} \cdot \mathbf{r}^{\prime}=\left\langle t^{3}, t^{2},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle=2 t^{3}$, so $W=\int_{0}^{1} 2 t^{3} d t=1 / 2$.
5) $4 \pi / 3$. The cleanest method is probably a parametrization with ϕ and θ. I used the level surface approach, with $\frac{d \sigma}{d A}=\frac{\|\nabla F\|}{\left|F_{z}\right|}=1 / z$, so $\iint_{S} x^{2} d \sigma=2 \iint_{R} \frac{x^{2}}{z} d A$. The 2 is to include the lower hemisphere. My parameters are x and y, so $d A=d x d y=r d r d \theta$. Using polar coordinates, $2 \int_{0}^{2 \pi} \int_{0}^{1}(r \cos \theta)^{2} r\left(1-r^{2}\right)^{-1 / 2} d r d \theta=\cdots=4 \pi / 3$. The final steps are slightly messy MAC 2312 methods.
6) $W=\iint_{\sigma} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=\iint_{T}\langle 1,1,1\rangle \cdot\langle 1,1,1\rangle d x d y=3 A=3 / 2$. Here, T is a triangle in the xy-plane with area $1 / 2$. I am using a standard shortcut, that avoids normalizing $\mathbf{n}=\langle 1,1,1\rangle$ and omits $d S / d A$.

7) TTFTT FTFFT

8) $J=\operatorname{det}\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)=2$. And $\frac{2 x-y}{2}=u$. And the new limits of integration come from the old ones (example: $x=(y / 2)+1$ becomes $u+v=v+1$ becomes $u=1$, etc). So the answer is $\int_{0}^{1} \int_{0}^{2} u d v d u=2$.
9) Get $\int_{0}^{\pi} \int_{0}^{1} x \cos (x y) d y d x=2$ (using $u=x y$. Using $d x d y$ instead is probably harder). Then divide by the area of R to get $f_{\text {ave }}=2 / \pi$.
10) See the text or lectures.

Bo) $M=\int_{-\infty}^{0} e^{x} d x=1, M_{y}=\int_{-\infty}^{0} x e^{x} d x=-1$ and $M_{x}=\int_{-\infty}^{0} \int_{0}^{e^{x}} y d y d x=1 / 4$. So dividing the last two by $M=1$, get $(-1,1 / 4)$.

