The problems are 10 points each unless labeled otherwise.

1) The acceleration of a particle in the $x y$-plane at time t is given, $\mathbf{a}(t)=-2 t \mathbf{i}$. The initial velocity is $\mathbf{v}(0)=\mathbf{i}+\mathbf{j}$ and the initial position is $\mathbf{r}(0)=4 \mathbf{j}$. Find the position after 1 second, and simplify.
2) Let $f(x, y)=2 x y-x^{4}-y^{4} / 16$ for $x, y \geq 0$. Find a relative maximum of f. Or, if it doesn't exist, explain. For a little extra credit, do the same for a relative minimum. Label your answer(s) clearly.
Algebra remark: The solutions of $t^{8}=1$ are $t=1$ and $t=-1$.
3) A point moves along the intersection of the plane $y=3$ with the surface $z=$ $\sqrt{29-x^{2}-y^{2}}$. At what rate is z changing with respect to x at the point $(4,3,2) ?$
4) Let $\mathbf{F}=\nabla\left(x^{3} y^{2}\right)$. So, $f(x, y)=x^{3} y^{2}$ is a potential function. Let C be a path in R^{2} from $(-1,1)$ to $(1,1)$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
5) [5pts] Let $w=2 x^{2}+y^{2}, x=\cos t$ and $y=3 \sin t$. Find $\frac{d w}{d t}$ when $t=\pi$. For full credit, use the Chain Rule (rather than expressing w directly in terms of t, though you may get some partial credit for that).
6) Integrate $G(x, y, z)=4 y$ over the surface given by $z=x+y^{2}$ for $-1 \leq x \leq 1,0 \leq y \leq 1$.
7) $[5 \mathrm{pts}]$ Let $\mathbf{F}(x, y, z)=(x-y) \mathbf{i}+(y-z) \mathbf{j}+(z-x) \mathbf{k}$. Compute curl \mathbf{F} and simplify.
8) Let $\mathbf{F}(x, y, z)=(x-y) \mathbf{i}+(y-z) \mathbf{j}+(z-x) \mathbf{k}$, as in Problem 7. Let C be the boundary of S, going CCW when viewed from above, where S is the portion of the plane $x+y+z=1$ in the first octant with an upward orientation. Use Stoke's theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$.
9) [20pts] True-False: assume f is differentiable and C is smooth.

If \mathbf{F} is conservative and C is a closed curve, then $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$.
Lagrange multipliers are used mainly to find directional derivatives.
$\nabla \times \nabla f=\mathbf{0}$.
The Divergence Theorem is one of the main methods for calculating work.
By Green's Theorem the area of R, bounded by a CCW curve C is $A=\int_{C} x d y$.
If f is continuous on the $x y$-plane then it has a maximum and a minimum value.
If the graph of $z=f(x, y)$ is a plane, then $f_{x}+f_{y}$ is a constant function.
If $D_{\mathbf{u}} f(0,0)=0$ for all unit vectors \mathbf{u}, then $\nabla f(0,0)=\mathbf{0}$.
If $\mathbf{u} \perp \mathbf{v}$ then $\|\mathbf{u}+\mathbf{v}\| \geq\|\mathbf{u}\|$.
If C in R^{3} has curvature $\kappa=2$ at every point, then C is a circle.
10) Circle ONE proof and do it (you can use the back, but leave a note here):
a) In $R^{2}, \mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta)$. Include a picture with labels and enough comments.
b) [16.8.32 done in class] Suppose f is harmonic, which means $f_{x x}+f_{y y}+f_{z z}=0$ on a domain D. Suppose \mathbf{n} is the unit outward normal vector at points of S (the boundary surface of $D)$. Use the Divergence Theorem to show that $\iint_{S} \nabla f \cdot \mathbf{n} d \sigma=0$.

Remarks, Answers: The average was 53 / 100 with top scores of 83 and 75. The lowest scores were on the recent topics, problems 6-8, averaging about 30%. I have not yet set a scale for the semester.

1) Briefly, $\mathbf{v}(t)=\int \mathbf{a} d t=-t^{2} \mathbf{i}+\mathbf{C}$. Get $\mathbf{C}=\mathbf{i}+\mathbf{j}$ (from $v(0)=\mathbf{i}+\mathbf{j}$). Likewise, $\mathbf{r}(t)=\int \mathbf{v} d t=\left(t-\left(t^{3} / 3\right)\right) \mathbf{i}+(t+4) \mathbf{j}$. So, $\mathbf{r}(1)=(2 / 3) \mathbf{i}+5 \mathbf{j}$.
2) Find the stationary point(s) from $0=f_{x}=f_{y}$. A little algebra leads to $x= \pm 1$ and $y=2 x$ (see remarks below about the case of $x=0$). Since $x \geq 0$ the only such point is $(1,2)$. Using D we can check that this is a relative max (the answer). Since there is no other stationary point, there is no relative min.

Remark: $\nabla f=\mathbf{0}$ at the point $(0,0)$ too. This would be a saddle point, but it is on the boundary and would not count as a relative min in any case. So, I ignored it in my answer above.

Remark on math notation: $1+3 x$ is not $(1+3) x$. Likewise $1+2 / 16$ is not $3 / 16$. Division and multiplication have precedence over addition.
3) "Rate" $=$ "Derivative". The question asks for $\frac{\partial z}{\partial x}$, or if you set $y=3$, the basic Calculus I derivative $\frac{d z}{d x}$, which should be easy. Plug in $(4,3,2)$ and get -2 .
4) The FTLI says the Answer $=f(1,1)-f(-1,1)=1-(-1)=2$.
5) $\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{d y} \frac{\partial y}{d t}=4 x(-\sin t)+2 y(3 \cos t)=0($ when $t=\pi, \sin t=0=y)$.
6) This answer views the surface as the graph of a function, $z=f(x, y)$, defined on a rectangle. So, $\frac{d \sigma}{d A}=j=\sqrt{1+f_{x}^{2}+f_{y}^{2}}=\sqrt{2+4 y^{2}}$. Then

$$
\iint_{S} G d \sigma=\int_{-1}^{1} \int_{0}^{1} 4 y \sqrt{2+4 y^{2}} d y d x=\cdots=\frac{2}{3}\left(6^{3 / 2}-2^{3 / 2}\right)
$$

7) $\operatorname{Curl} \mathbf{F}=\nabla \times \mathbf{F}=\langle 1,1,1\rangle$.
8) Stoke's Theorem changes the question into a surface integral, $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d \sigma$. I'd view this as a level surface of $x+y+z$ (but the other options as also OK) and quickly get $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $j=\sqrt{3}$. Answer $=\iint_{T} 3 d A=3$ area of $\mathrm{T}($ a triangle $)=3 / 2$.
9) TFTFT FTTTF
10) See the text or lectures.
