The 3 problems were worth 30,30 and 40 points, resp. I graded 3 a and 3 b together for 20 points, same for 3 c and 3 d .

The average was approx 40 out of 100 with a high score of 86 . I have not thought much about a scale for this quiz but a 40 might be a D or low C . Review any problems you missed, perhaps with help from our LA. Also, study any listed review topics that you have not yet mastered. I probably should have listed parametric equations, so please review that too.

1a) $\tan (x)+C$. This is just a memory question. You should explain briefly with a comment like "from memory" or "because $\frac{d}{d x} \tan x=\sec ^{2} x$ " though I didn't require that this time.
1b) $x / 2-\sin (2 x) / 4+C$. Start with the identity $\sin ^{2} x=(1-\cos (2 x)) / 2$ as in a similar problem from the first day of class. If you don't know this identity, but do know the one from class, you could start with $\sin ^{2} x=1-\cos ^{2} x$ instead.

Notice that the methods for 1 a and 1 b are quite different. Integrals may require a little trial and error to find the right method.
2) TFFTF. You are always welcome to ask me for explanations of TF.

3a) The min is $f(3 / 2)=-9 / 4$ and the max is $f(0)=0$.
3 b) We know there is an abs min and an abs max (two answers, and not ∞). This is the Extreme Value Thm (EVT). We know these values only occur when x is an endpoint (0 or 2) or a critical point ($3 / 2$, which comes from setting $f^{\prime}(x)=0$). So we compute all three and ignore the middle one $(f(2)=-2$ is in between the answers in 3a) so that is not part of the answer).
3c) The range is the interval $[-9 / 4,0]$.
3 d) The range includes all possible values of $f(x)$ such as $f(3 / 2)=-9 / 4$ and $f(0)=0$, and every number in between (this last comment is based on the Intermediate-Value Theorem). It doesn't include any numbers bigger than 0 since, according to 3 a, that is the maximum value.

Some people thought they could just plug in the endpoints of the domain, $x=0$ and $x=2$, to find the range. This works in simple examples where the function is monotone, but not in general. Some people wrote $[0,-9 / 4]$ but the order is wrong because $-9 / 4<0$. Some people drew a graph, which is probably a good idea for planning / checking, but it is not required.

