1) (25 pts) Find parametric equations for the line that passes through the point $P(-3,4,1)$ and is parallel to the vector $\mathbf{v}=\langle 1,1,2\rangle$. For a little extra credit, decide whether the line passes through the point $Q(4,2,7)$ and justify.

2a) (20pts) Find the area of the triangle $T=\triangle P Q R$ given the 3 points $P(2,-2,1)$, $Q(3,-1,2)$ and $R(3,-1,1)$
2b) (15pts) Find a unit vector orthogonal to the plane $P Q R$ that contains these three points.
3) (40pts) Answer each with True or False. You do not have to explain.

It is possible for two vectors in R^{3} that $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \times \mathbf{v}$.
The quadratic surface $x^{2}+y^{2}+17 z^{2}=17$ has a saddle point.
One trace of $z=x^{2}-y^{2}+17$ is the hyperbola where $x^{2}-y^{2}=1$ and $z=18$.
For all angles $x>0, \cos ^{2} x=\frac{1+\cos 2 x}{2}$.
In R^{3}, if $\mathbf{v} \perp \mathbf{j}$ then $\operatorname{proj}_{\mathbf{j}} \mathbf{v}=\mathbf{0}$.

Remarks, Answers: The average grade was approx 78 out of 100 (or 105 with extra credit) among the top 18 scores, which is a big improvement. The high scores were 101 and 96 . Probably C's would start around 67 if there were a scale.

1) $x=-3+t, y=4+t$ and $z=1+2 t$. Show some work, such as the $\mathbf{r}(t)$ formula.

2a) Compute any two sides, as vectors, such as $\overrightarrow{P Q}=\langle 1,1,1\rangle$ and $\overrightarrow{P R}=\langle 1,1,0\rangle$. Then the cross product is $\mathbf{n}=\langle-1,1,0\rangle$. The area is $\|\mathbf{n}\| / 2=\sqrt{2} / 2$.

2b) Normalize \mathbf{n} and get $\frac{1}{\sqrt{2}}\langle-1,1,0\rangle$. I guess you might get the negative of this vector if you started out differently, but I didn't see that happen while grading.
3) FFTTT.

