1) Given a curve $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$, find the equation of the osculating plane when $t=0$. Your work should include these formulas with justification (show enough work): $\mathbf{T}(t)=\frac{1}{5}\langle-3 \sin t, 3 \cos t, 4\rangle \mathbf{N}(0)=\langle-1,0,0\rangle$
2) Show that $\lim _{(x, y) \rightarrow(1,1)} \frac{x y^{2}-1}{y-1}$ does not exist, by considering the limits along two different paths (such as $x=y$ and $x=1$). Include a sentence at the end to explain your reasoning. You can use the algebra formula $a^{3}-1=\left(a^{2}+a+1\right)(a-1)$.
3) Find $d w / d t$ given that $w=\frac{x}{z}+\frac{y}{z}, x=\cos t, y=2 t$ and $z=1 / t$. For full credit, use the Chain Rule, though you may check your answer the other way, by expressing w directly as a function of t.

Remarks, Answers: The average score was approx the same as Exam I, approx 66. The 4 highest scores were in the high 80 's. You can use the Exam I scale for this quiz. The problems were worth 30,40 and 30 resp. They were taken (or modified) from exercises 13.5.7, 13.5.9, 14.2.49 and 14.4.3.

1) For 5 points, I reminded some people that the osculating plane contains the point $\mathbf{r}(0)$ and the vectors $\mathbf{T}(0)$ and $\mathbf{N}(0)$. You can deduce that the normal vector is $\mathbf{n}=\mathbf{B}(0)=$ $\langle 0,-4 / 5,3 / 5\rangle$ so the equation is $(-4 / 5)(y-0)+(3 / 5)(z-0)=0$ which simplifies (optional) to $3 z-4 y=0$.

Some people who started well seemed to forget what the equation of a plane should look like. Several answers looked like the vector equation of a line, etc.
2) On the path $y=x$ the limit simplifies to $\lim _{x \rightarrow 1} x^{2}+x+1=3$. On the path $x=1$ it simplifies to $\lim _{y \rightarrow 1} y+1=2$. Since these differ, the original limit does not exist. The answers were mostly good on this one.
3) Using the Chain Rule $\left(\frac{d w}{d t}=w_{x} \frac{d x}{d t}+\right.$ etc $)$, get $-t \sin t+2 t+(\cos t+2 t)$. Remember to convert all variables into t notation at the end. The other method starts with $w(t)=$ $t \cos t+2 t^{2}$ which leads to the same answer.

