1) (30pts) Let $\mathbf{r}(t)=(t+1) \mathbf{i}+2 t \mathbf{j}+t^{2} \mathbf{k}$. Write \mathbf{a} in the form $\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$ at $t=1$ without finding \mathbf{T} and \mathbf{N}.
2) (30pts) Calculate all four second-order partial derivatives of $g(x, y)=x^{2} y \cos y+y \sin x$.
3) (30pts) Let $f(x, y, z)=x / y-y z$. Find the direction in which f increases most rapidly at the point $P(4,1,1)$.

Remarks + Scale: The problems came from 13.5.3, 14.3.43 and 14.5.21. By accident, the quiz was out of 90 points, so I will multiply each score by $100 / 90$ to correct for that. The average was approx 55 out of 90 , with high scores of 80 and 75 . An advisory scale for the quiz:

A's 63-90
B's 53-62
C's 43-52
D's 33-42

Answers:

1) One fairly short way to compute the two coefficients is this:
$\mathbf{r}^{\prime}(t)=\mathbf{i}+2 \mathbf{j}+2 t \mathbf{k}$.
$\mathbf{a}=\mathbf{r}^{\prime \prime}(t)=2 \mathbf{k}$ and $\|\mathbf{a}\|=2$.
$d s / d t=\left\|\mathbf{r}^{\prime}\right\|=\left(5+4 t^{2}\right)^{1 / 2}$
$a_{T}=d^{2} s / d t^{2}=4 t\left(5+4 t^{2}\right)^{-1 / 2}=4 / 3$ when $t=1$.
$a_{N}=\sqrt{\|\mathbf{a}\|^{2}-a_{T}^{2}}=2 \sqrt{5} / 3$.
Answer: $\mathbf{a}=4 / 3 \mathbf{T}+2 \sqrt{5} / 3 \mathbf{N}$.
2) $g=x^{2} y \cos y+y \sin x, g_{x}=2 x y \cos y+y \cos x, g_{y}=x^{2}[\cos y-y \sin y]+\sin x$. None of these are part of the final answer, since these are not second order. Answers:
$g_{x x}=2 y \cos y-y \sin x$.
$g_{x y}=2 x(\cos y-y \sin y)+\cos x$.
$g_{y x}=2 x(\cos y-y \sin y)+\cos x$. You might save time using $g_{y x}=g_{x y}$ but technically you should check that both are continuous. Also computing both is a good way to check your work.

$$
g_{y y}=x^{2}(-2 \sin y-y \cos x) .
$$

3) The direction is given by the gradient vector; $\nabla f(x, y, z)=\left\langle 1 / y,-x / y^{2}-z,-y\right\rangle=$ $\langle 1,-5,-1\rangle$. You can stop here for full credit, but it might be even better to normalize.

If you did not circle your answer, and your work ended with a scalar (such as the maximal derivative), I could not give full credit.

