1) Find the average height of the cone $z=\sqrt{x^{2}+y^{2}}$ over the region where $x^{2}+y^{2} \leq 4$. Suggestion: polar coordinates.
2) G is the solid with base $z=0$ and top $z=y^{2}$, with $0 \leq x \leq 1$ and $-1 \leq y \leq 1$. Compute the volume of G using a triple integral in rectangular coordinates.
3) D has a base where $z=0$, the sides are the cylinder $r=\sin \theta$, and the top is $z=3 r^{2}$. Find the 6 limits of integration in cylindrical coordinates for the triple integral of f over D (so, fill in the blanks below, but do not try to evaluate this).

$$
\iiint f(r, \theta, z) d z r d r d \theta
$$

Remarks: The problems were worth 30, 40 and 30 points. 3a and 3 b were worth 6 and 24 . These were taken from exercises 15.4.34, 15.5.23 and 15.7.35.

The 2 highest scores were 91 and 90 . The average was approx 68 out of 100 , which is a little higher than the semester average. But I don't think it will affect the semester scale much at all. Here is an advisory scale for the Quiz:

$$
\begin{aligned}
& \text { A's } 76 \text { to } 100 \\
& \text { B's } 66 \text { to } 75 \\
& \text { C's } 56 \text { to } 65 \\
& \text { D's } 46 \text { to } 55
\end{aligned}
$$

1) $4 / 3$. In general, you can compute an average by dividing (like $(3+5+7) / 3=5)$. Here, $\int_{0}^{2 \pi} \int_{0}^{2} r r d r d \theta=\cdots=16 \pi / 3$, divided by the area, 4π, gives $4 / 3$.
2) $V=\int_{0}^{1} \int_{-1}^{1} \int_{0}^{y^{2}} 1 d z d y d x=\cdots=2 / 3$.

3a) The results were poor, so I went over this one in class on $3 / 31 / 21$. It is a circle with radius $1 / 2$ centered at $(0,1 / 2)$ passing through $\mathrm{P}(0,1)$ for example. Note that P is where $\theta=\pi / 2$ and $r=\sin (\pi / 2)=1$. With practice, you can plot several points like P this way and connect the dots. The important thing for 3 b is that $0 \leq \theta \leq \pi$.
3b) $\int_{0}^{\pi} \int_{0}^{\sin \theta} \int_{0}^{3 r^{2}} f(r, \theta, z) d z r d r d \theta$. This was easy and the results were fairly good, except maybe for $\theta \leq \pi$.

