7) Pay special attention to dots and crossings. If you don't 'get it' you might draw some level curves for simpler examples that you already know well; such as $f=x y$ or $f=x^{2}+y^{2}$, to get the idea.
8) This is a case where $D=0$, which means you need a different approach. Please don't email me for help until you've tried this yourself! It isn't very hard because you can think about the max and/or min of x^{4} and of y^{4} separately, and you don't really even need Calculus to do that.
9) I wanted you to work through at least one triangle example, but will offer a little help. The boundary consists of three segments; I'll do the hypotenuse for you. It goes from $(0,4)$ to $(5,0)$ so as a vector, it is $\langle 5,-4\rangle$. Parametric equations are: $x=5 t$ and $y=4-4 t$. Plugging into f we get $f(t)=5 t(4-4 t)-5 t-3(4-4 t)=-20 t^{2}+27 t-12$ with $0 \leq t \leq 1$. Using Calc I, we get $f^{\prime}(t)=0$ when $t=27 / 40$ and our 'candidates' are $t=27 / 40$ and the endpoints $t=0$ and $t=1$. I get $f(27 / 40) \approx-3.1$ and $f(0)=-12$ and $f(1)=-5$. Since -5 is in the middle we can ignore it, but -12 is the min on this segment, and -3.1 is the max. Now, you should check me on this and then do the interior and two other sides.
10) Should be very similar to an example done in class.
