```
Combinatorics, The Last Lecture S Hudson, 12/3/13
```

The $12 / 5 / 13$ class period will be mainly review. The $12 / 3 / 13$ lecture will go a bit beyond Chs 9 and 13, and will outline one of my papers from the Journal of Combinatorics. Here are some brief notes and a few exercises on that (intended to be easy, just to help you get the vocab and main ideas). Try these by $12 / 5 / 13$ if possible and ask me about any problems you cannot solve.

1) Let $f(x)=1-x, f:[0,1] \rightarrow[0,1]$.
a) Show that if $S=(a, b) \subseteq[0,1]$ then $|f(S)|=|S|$ (recall that $|S|$ means the length $b-a$ now, not cardinality). Roughly, this shows that f is a measure-preserving map. It is similar to the idea of 1-1, but not quite the same.
b) Show that if $g:[0,1] \rightarrow[0, \infty)$ is continuous, then $\int_{0}^{1} g(f(x)) d x=\int_{0}^{1} g(x) d x$. Roughly, this says $\|g \circ f\|=\|g\|$. So, the transformation $g \rightarrow g \circ f$ doesn't affect the size of the function.
c) Draw the square $D=[0,1] \times[0,1]$ as a subset of the $x y=$ plane. Let $B \subset D$ ("B" is for "bad" pairs) be the points where $|x+y-1|>0.5$ (this should be the union of two triangles near corners of D). Check that the graph of f does not go through B. This is similar to placing rooks on a chessboard avoiding certain "bad" regions.
d) Roughly, exercises a) and c) say that f is an SDR. Think this over until you see the analogy with Ch 9 clearly.
2) Repeat parts a) and b) for the discontinuous function

$$
f(x)=\left\{\begin{array}{l}
0.5-x \text { for } 0 \leq x \leq 0.5 \\
x \text { for } 0.5<x \leq 1
\end{array}\right.
$$

3) Give an example of a function $f:[0,1] \rightarrow[0,1]$ for which both a) and b) fail. (try simple formulas such as x^{2} or $\sin (x)$, though one of these ideas is wrong).

4a) Let B be the bad set in 1c). $S=(0.2,0.4)$ be a set of "men". Let $W_{S}=\{y \in$ $[0,1]: \exists x \in S,(x, y) \notin B\}$ ("the compatible women"). Show that $W(S)=[0.1,1]$ (if you cannot solve this by algebra, it should be pretty clear from a picture).
b) With the same set B, show that for all intervals $S,\left|W_{S}\right| \geq|S|$. Roughly, this means the marriage condition (MC) holds. Recall from 1d) that an SDR exists for this B.
5) Problems 1 to 4 show some similarities between continuous (Calculus-style) problems and our study of SDRs in Ch. 9. To illustrate some differences, let $B=\{(x, y) \in D$: $x<y\}$, which is large triangle, roughly half of D, but not including the line $y=x$.
a) Show (as in 4b) that for all intervals $S,\left|W_{S}\right| \geq|S|$ so MC holds.
b) But there is no SDR with this B. Spend a few minutes looking for one until you are fairly convinced. I will give some extra credit if you can prove this using Calculus; it is not super-easy.

Remarks: 1) The rest of this web page was written for a 2008 class using the previous edition of the text. But some exercises have not changed, so this may still be useful. 2) See the text answers/hints first.

Chapter 9, some answers to HW:

1) See me for a picture if necessary - the graph has 6 vertices on each side. Connect x_{1} to y_{1}, y_{2}, y_{3} and y_{6} (from blank squares in the top row). Etc. The rooks can go into squares 1122334654 and 65 . So, the matching includes edges $x_{1} y_{1}, x_{2} y_{2}$ etc.
2) See me for a picture if necessary. The left side has the White squares: 11, 13, 22, 26, $33,35,46,55,62,66$. The right side has the Black squares: $12,16,23,25,32,34,54,56$, 61,65 . Connect adjacent squares such as 11 to 12 , etc. Then the matching and covering should be easy.
3) Just reverse the process used in problem 1; let the $x_{i} \in X$ be the rows of the board, etc.
4) I don't see how Chapter 9 helps solve this one, so I've removed it from the suggested list.
5) $p|X| \leq|\triangle| \leq p|Y|$.

10a) It is OK to start with almost any M^{1} you want, but the larger it is, the less work you must do later. In general, it's good to include as many dead-end edges as possible (they will never be changed by the Matching Algorithm). For example: $x_{1} y_{1}, x_{5} y_{2}, x_{6} y_{3}, x_{7} y_{4}$, $x_{3} y_{5}$ and $x_{4} y_{7}$. We can also throw in $x_{2} y_{6}$. This is maximal because every x_{i} is used. We can set $S=X$, so $|S|=|M|=7$.

My answer doesn't use the Matching Algorithm, but I'd probably need it for 10b (answered in text). Make sure you know how to use it!
12) 5 from inspection (there are only 5 women). I suppose you could also use Thm 9.3.3.
13) Two. One uses $e_{j}=j$ for all j. One uses $e_{j}=j+1$ for all j (except $e_{n}=1$). There are no others (prove that by induction).
15) If A_{1} and x are removed, the new problem still satisfies the MC. Each LHS has been reduced by at most 1 (by removing x).
17) I've removed this from the suggested list (it doesn't require Ch 9 skills).
20) To me, this seems obvious from the definition of stable. [and I don't understand the hint in the back].
27) Convert this to a bipartite graph problem, omitting edges with $a_{i j}=0$. Then it's fairly similar to the proof that a p-regular graph has a perfect matching. If S is a cover, then $\sum_{x_{i} \in S} \sum_{j} a_{i j}+\sum_{y_{j} \in S} \sum_{i} a_{i j}=|S|$, because each $\sum_{j} a_{i j}=1$. Some terms $a_{i j}$ will be double-counted (if $x_{i} \in S$ and $y_{j} \in S$). Since X is also a cover, we get a similar formula for $|X|$, but with no double-counting. So, $|S| \geq|X|=n$. This shows $c(G)=n$ and there is a perfect matching, which means we can place the rooks as desired.

