1) How many ways can 2 blue rooks, 2 white rooks and 2 red rooks be placed on an $8 x 8$ chessboard so that no two attack each other ?
2) Answer True or False to each; you do not have to explain.

$$
\begin{aligned}
& K_{5} \rightarrow K_{3}, K_{3} \\
& K_{5} \rightarrow K_{5}, K_{2}, K_{2} \\
& K_{7} \rightarrow K_{3}, K_{3} \\
& r(3,2)=2
\end{aligned}
$$

3) How many towers are there, $\emptyset \subseteq A \subseteq B \subseteq\{1,2, \cdots 10\}$? (as usual, explain)
4) How many numbers in $\{1,2, \cdots 10,000\}$ have their digits sum to 7 ? (ex: 502).
5) We choose 151 integers from $\{1,2, \cdots 300\}$. Show that one chosen must divide some other one chosen (you can answer on the back).

Remarks and Answers: The average was 71 (among the top 15) with highs of 102 and 93. The rough scale is

A's 78-100
B's 68-77
C's 58-67
D's 48-57

1) $(8!)^{2} / 32$. There are many ways to approach this, but one of the simplest is this sequence of decisions:

Which rows to use ? $C(8,6)$
Which columns to use ? $C(8,6)$
Which 6 locations to use among the remaining 36 squares? 6 !
Which colors go on which squares ? 6!/8
Then, multiply these 4 numbers.
2) FTTF
3) 3^{10} (decision 1 is whether $1 \in A$ or $1 \in B-A$ or it is in neither; 3 options). There were other successful approaches, but this is simplest.
4) This is a $x_{1}+x_{2}+x_{3}+x_{4}=7$ problem (eg 7 eggs in 4 baskets), so $C(10,3)$.
5) [similar to HW and lecture examples, so this will be brief] Factor each chosen $n=2^{k} q$, where q is odd. There are $151 n$'s and at most $150 q$'s, so some chosen pair shares a q.

The smaller of these two divides the other.
Bonus (mostly for fun)) This was to solve problem 1 with the extra rule that no rook can go into a corner. The most natural approach seems to be:

Let A be your answer to problem 1 .
Let $B=$ the number of ways to do it with a rook in a corner.
Let $C=$ the number of ways to do it with 2 rooks in corners (opposite corners).
Then, Answer $=A-B+C$ by Subtraction and Inclusion-Exclusion. It seems that $C=2 C(6,2)^{2} 4!6!/ 8$ from reasoning like problem 1 (but I only spent a few minutes on this). At a glance, B seems similar.

