1) [30pts] Solve this: $h_{n}=-h_{n-1}+3 h_{n-2}+5 h_{n-3}+2 h_{n-4}$ with $h_{0}=1, h_{1}=0, h_{2}=1$ and $h_{3}=2$. Hint: the characteristic equation has two distinct roots, both in $\{-1,1,2,3\}$. The larger of the two roots has multiplicity 1 . Much partial credit for the general solution (without solving for the c_{i}).
2) [25pts] A polynomial p has degree 3 with values $p(0)=3, p(1)=6, p(2)=15, p(3)=36$ and $p(4)=75$. Use a difference table to find a simplified formula for $p(n)$.
3) [20pts] How many ways can the letters $\{a, b, c, d, e\}$ be placed into 3 identical boxes such that no box is empty ? Simplify your answer to an explicit number (such as 24 or 32 , for example). For full credit, use standard formulas from Ch 8 , rather than listing them all.
4) [25pts] Choose ONE: answer on the back.
a) State Thm 8.1.1 (about ± 1 's and Catalan numbers) and give a rough proof. Include the formula for U_{n} with justification.
b) State Thm 7.6.1 (about triangulations of polygons) and give a rough proof of the recurrence relation for h_{n}. State the formula for the solution (for h_{n}) but do not prove that.
c) Compute and simplify $S^{\#}(4,4)+B_{4}+p_{4}+h_{4}^{(2)}$. This is mainly a test of your memory of Ch 8 notation and formulas - so, do not ask for help with that.

Remarks and Answers: The average was approx 71 with high scores of 85,84 , and 83 . Your semester average is again in the upper right; the highest of these are 83 and 82 , with an average of approx 72 . The unofficial scale for the quiz (and the semester) is:

$$
\begin{aligned}
& \text { A's } 78-100 \\
& \text { B's } 68-77 \\
& \text { C's } 58-67 \\
& \text { D's } 48-57
\end{aligned}
$$

1) I gave approx 25 points for

$$
c_{1}(-1)^{n}+c_{2} n(-1)^{n}+c_{3} n^{2}(-1)^{n}+c_{4} 2^{n}
$$

See the worked out example in Ch 7 for more details and the values of c_{i}.
2) The 0th diagonal is $3,3,6,6,0$ so $p(n)=3 C(n, 0)+3 C(n, 1)+6 C(n, 2)+6 C(n, 3)$ which simplifies to

$$
p(n)=n^{3}+2 n+3
$$

3) $S(5,3)=25$ from recursion formulas or the table (similar to Pascal's Triangle).

4ab) see the text or lectures.
4c) $24+15+5+11=55$

